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‘room component and a related public school teaching component. The

. PREFACE

., X i \ .

The Mathematics-Methods Program (MMP) has been developed by the
Indiana University Mathematics Education‘Development Center (MEDC)
dur1ng the years 1971-75. The development of the MMP was funded by.
the UPSTEP program of the National Science Foundation, with the goal
of producing an 1nnovat1ve program for the mathematics training of
prospective elementary school teachers (PSTs).

" The primary features of the MMP are: .

N
"

It combines the mathematics training and the methods tra1n1ng of
PSTs. . .
" It promotes a hands-on, 41aborat0ry approach to teaching in which
PSTs learn mathematics and methods by doing rather than by 1is-
~ tening, taking notes or memorizing.
It involves the PST in using techniques and materials that are
‘appropriate for use w1th children. . -
"It focuses on the real-world mathematical concerns of children
and the real-world mathematical and pedagogical'concerns of

PSTs.

e R

The MMP, as developed at the MEDC, involves a university class-
university classroom componént combines the mathematics content

courses and methods courses normaliy taken by PSTs, wh11p the public
school teaching component provides the PST with a chance to gain ex-
perience with children and insight into their mathematica) thinking.

i
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_A mddet has beef developed for the implementation of the public
xschool teaching component of the MMP. Materials haveqﬁe/h developed
for the univensity ciassroom portion of the MMP. These include 12

instructional units with the following titles: B

Numeration

Addition and Subtraction

Multiplication and Division c
Rational Numbers with Integers and Reals

Awareness Geometry

Transformational Geometry
Analysis of Shapes
Measurement
Number Theory
'Probability and Statistics
;{ ) Graphs: the Picturing of Information
’ Experiences in Problem Solving

Y

These units are written in an activity format that involves the PST
in doing mathematics with an eye toward the application of that math-
ematics in the elementary school. The units are almost entireiy n-
depepdent of one another, and any se1ection of them can be done, in N
any order. It is worth noting that the first four units 1isted per-
tain to the basic number work in the elementary school; the second

four to the geometry of the elementary school; and the final four to .

mathematical topics for the elementary teacher.

For purposes of formative evaluation and dissemination, the MMP
has been field-tested at over 40 colleges and universities. The
field implementation formats have varied widely. They include the
foiiowing'

wo

Use in mathematics department as the mathematics content pro—
gram, or as a portion of that program€7'
Use in the education school as the methods program, or as a por-

tion of that program,
Combined mathematics content and methods program taught in

v
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pither the mathematics department, or the education school. or
 jointly; . )

» Any of the Jbove. with or without the pub11c school teaching ex-
- perienc’

° . Common to most of the field 1mp1ementa;10ns was a small-group
- ) format for the university classroom experience and an emphasis on the
use of concrete materials. The various centers that have implemented
all or part of the MMP have made a number of suggestions for change,
many of which are reflected in the final form of the program. It is
fair to say that there has been a géneral feeling of satisfaction '
- with, afid enthusiasm for, MMP from those who have been involved in
field-testing. T
A 1ist of the field-test centers of ‘the MMP is as follows:

4

_ ALVIN JUNIOR COLLEGE
Alvin, Texas

BLUE MOUNTAIN COMMUNITY COLLEGE
Pendleton, Oregon

"BOISE STATE UNIVERSITY
Boise. Idaho

BRIDGENAT£R COLLEGE - .
Bridgewater, Virginia

CALIFORNIA STATE UNIVERSATY,
CHICO

CALIFORNIA STATE UNIVERSITY,
NORTHRI DGE

CLARKE COLLEGE .
Dubuque, Iowa ,

UNIVERSITY OF COLORADO
Boulder, Colorado

.-

UNIVERSITY OF COLORADO AT
DENVER

CONCORDLA TEACHERS COLLEGE
River Forest, 1111nois_

o

GRAMBLING STATE UNIVERSITY
Gramb1ing, Louisiana

ILLINOIS STATE UNIVERSITY

Normal, T11linois

INDIANA STATE UNIVERSITY
EVANSVILLE

INDIANA STATE UNIVERSITY
Terre Haute, Indiana -

INOIANA UNIVERSITY . “

Bloomington, Indiana )

INDIANA-UNIVERSITY NORTHWEST
Gary, Indiana

MACALESTER COLLEGE
St. Paul, Minnesota

UNIVERSITY OF MAINE- AT FARMINGTON

UNIVERSITY .OF MAINE AT PORTLAND-
GORHAM -7

THE UNIVERSITY OF MANITOBA
Winnipeg, Manitoba, CANADA
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MICHIGAN STATE UNIVERSITYﬂ SHELBY STATE COMMUNITY COLLtGE

East Lansing, Michigan e, Memphis, Tennessee .
UNIVERSITY OF NORTHERN TOWA UNIVERSITY OF SOUTHERN MlsgIS‘SlPPI ‘
Cedar Falls, Iowa . Hattiesburg, Mississippi
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Marquette, Michigan ~ Syracuse, New York
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UNIVERSITY . Houston, Texas

Maryville, Missouri
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INTRODUCTION TO o
THE NUMBER THEORY UNIT

.

Questions involving the couuting numbers 1, 2, 3, ... are as old as
matnematics itself. Some natura] questions. when viewed 1n the right
light, are easily answered. Others which appear equally natural and
answerable, have required the efforts of some of the world's best
mathematicians to resolve. Indeed, some have defied all attempts at
"solution and are of current research interest. Number theory, per-
haps more than any other branch bf )
mathematics, has profited from the
efforts of amateurs. Lla this con-
:text we use the term amateur to
refer to a nonprofessional; it
carries no connotation of incapa-
bility. In fact, some of the
. most interesting and profound
ques tions in the subject Have been
raised and studied by amateurs. o
The many contributions by $mateurs
have been encouraged by the°fact o . , .
" that the problems are frequently quite near the surface; i.e., they
occur in the normal course of a thoughtful study- of the counting num-
bers, /gnd they can be attacked by methods that do not depend on. the
development of an elaborate mathematical theory. The fact that num-
ber theory abounds with such questions is onexagogent reason for' in-
cluding sdme number-theory work in the elementary school.
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*\Y round out this presentation of elementary number theory. M

3

‘an interesting, nonroutine setting Number theory ideas are involved

» scheme far ‘attacking such problems "~ Several problems of varying de-

Section II s posed and solved in detail in the Appendix.

" to delve further into some a

In addition to being a source of questions that can prov1de chil-

“dren with probﬂem so]ving experiences, number theory has a direct
1ationship to the arithmetic curriculum.. Teachers find' ‘that number-
tHEory activ1ties can help to strengthen skills with basiC'facts in

in. computing common denominators for fractioﬂs BeSides children v rriiv.
just seem to enJoy looking for the patterns that can be found in the
counting numbers. - P ' )
The unit begins with an ovquiew that focuses on the historica1 _
development of_number theory and the place of ‘number theory in the B
elementary school curriculum. There is a short list of definitions‘ '
unnediately fol]ow1ng this Introduction so that the tefminoiogy and
notation used in the overview and throughout the unit will be clear.
Section I includes the basic concepts of div1sibi11ty, primes,-

and factorization Most of this material appears explicitly in ele-

mentary school programs.

Section II -is concerned WJth problem solving. Elementary number
theory is an extraordinarily fru1tfu1 source of easily understood but
challenging problems, and this section presents an brganizational

grees of difficulty are collected at the end of the section. You are »
invited to test your skill on them. Another problem like the ones of

Section III illustrates how some.of the ideas introduced earlier
in the unit can be extended and app1iedvin other situations. _

Throughout the unit there are frojects that are more substantial
than exercises and pursue ideas not followed up in the activities
Fhese ‘projects, which may serve Gs the basis for reports to the c1ass,

"The unit closes with a ;eBected bibliography for those who wish
pect of number theory. The references
cited include some_on history, conterit, and pedagogy

‘




DEFINITIONS OF,TERMS USED IN NUMBER THEORY

K
Ca

Thg,terms'defined on this.page are used thfod@hout the unit. ‘Mény of

them are familiar. tg.you, but they are 1nc1uded so that you will be

certain of their meanings. It is 1mportant that we have a precise

vocabulary, in which the terms have the same mean1ngs for all of us.

In the def1n1t1ons that follow, thelymbols a, b, ¢, d, ... deno‘te ;
te

counting numbers’ 1.e.,.numbersvse1 d from the set {1, 2,_3,.,.,}:

1. a s a mult%g]e'of b if there is.a-c su€ ithat a=bc. In.
_this case, b~ and. c are factors of a. S
Thus, 20 is a mu1t1p1e of 5, and 4 and 5 are. factors of 20

2. The set of factors of a, or the factor set of a, '15 the set -
of all factors of a. ) '
The set of factors of 60 is
{1, 2, 3, 4, 5, 6, 10, 12, 15, zo 30, 60}.

3.. The set of mulﬁip}es of a is the set of~gll_mu1t1p1e§ of a.

“For example, the set of multiples of 3 is o o
' {3, 6,9, 12, 15, ...}. '
Note that the set of multiples of 3 is an infinite set.

o

"4, a is prime if the factor set of. a contains exactly two ele-
ments. R ) o
“The first eight primé numbers are 2, 3, 5, 7, 11, 13, 17,°19.

The factor set of 5, fof example, is {1, 5}.

5. a is composite if the factor set of a contains more than two
elements. '
The first ten composite numbers are 4, 6, 8, 9, 16, 12, 14, 15,
16, 18. The factor set of 9, for example, is {1, 3, 9}.
Note: The factor set of 1 is {1}. So 1 is neither prime nor
composite. PA11 bther counting numbers are either prime or com-

“posite.
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'

6. a. divides b or a is a divisor of 'b if. a is a factor of =

b * . . . 7y
If a divides b, we write a|b. For example, . i‘ »
' 5 divides 20 since 20 = 5-4. oy ’

7. a and b are relatively prime if thert is no é; c#l, -_such
that cla and c|b; i.e., -a and b do not share a. factor

besides 1. .

The numbers 15 and 22 are relatively prime, even though neither

one happens to be prime. ‘ g
' /
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FOCUS: - /

You w111 be asked to read or view an*dverview of the contents of "this
unit. The first part of the overview wi]] present a few highlights
of the h1story of namber theory. The remaining part will focus on
the roles of number theory A ‘the elementary mathematics curr1cu1um
Two roles are illustrated: zj;(app11cat1qn of number }heory ideas to
the basic proceSses of arittMetic~and the use of number theory as a
medium for prob]emese1ving expefiences.
MATERIALS: . Y . . T
(Optional) The, Mathematics-ﬁethods Program s]idettapeypresehtation
entitled, "Ogerview of Number Theory ' ‘ '

-

DIRECTIONS: ’ o

~

Read the essay entitled "Overview of Numbe; Theory" which starts on '
page 7 or view the slide-tape overview of the same title, and then
ehqege in a brief_c]aésrbom discussion of some of tﬁe points raised

in it. - The questions which follow can serve as a. basis for.discus-

_ sion. These questions shbuld be read before reading or viewing the
overview. ' '

1. Why is the strand "number theory" 1nc1ude& in the elementary
'mathemat1cs curricu]um?

2. Some educators have suggested that the pumber theory* strand is
ideally suited to a more child-oriented and less teacher-oriented
instructional mode. Discuss this statement and provide erguments v

.~ to“support your position.’ ; ' o %
3. How do you know that Fermat's conjecture holds for n = 27 (/~\

\
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4. Construct another magic square using the numbers 1 through 9. .
. . g N
A 1ist of definitions and notations is given on pages 3/ 4. You.may .
wish to look over this list before reading or viewing the overview.

The terms defined there will be used throughout the unit.




began to speculate on the prop-

“special significance. Examples

AN OVERVIEW: OF NUMBER THEORY

Number théory, as a branch of mathematics, has an especially rich

)history and, as a source of interesting and sometimes surprising prob-

lems, it is unsurpassed. There are topics from number theory that
occur explicitly in the elementary school cgrriculdm, e.g., odd and
even numbers, prime and composite numbers, faltor trees, and least
common multiple. Some of these ideas--for instance, odd and 2ven -
numbers, and the connection between the‘cqncept of prime numbers and
the representation of sets of objects in arrays--can be presented at ‘
the primary level. Other ideas--for instance, factor trees and lealt
common mdltiplei-occur more d%tura]lyain the upper elementary grades.
At all levels, one can pose 1ntefést1ng challenge-type problems with
number-theoretic content. This unit contains a very brief introduc-
tion to some of the most basic ideas of number theory, a glimpse into
the history of the subject and a few of its many famous problems, and
a sample of the ways in which tﬁese ideas occur in the elementary
curriculum. Throughout the unit you are urged to "participate" in
the mathematics. Read with a.pencil in hand, check the computations,
and create your own examples. Some of the greatest number theorists
of'history have been amateurs.
Soon after early humans
learned to count and to perform
the arithmetic operations, they

erties of the counting numbers.
Among the earliest indications
of interest in matters that

have number-theory content are
the myths and superstitions of

numerology. Many cultures had
numbers to which they attached -
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are the;éncient‘Hindus and 10,
01d Testament Jews and 7, and
certain American Indians and 4.
Since the Greeks expressed num-
bers by means of letters in their
alpﬁabet. each word and, in par-
ticular, each name was associated .
'with a number. This association
fostered interest in the mysti-
cism of qumbers.‘ Relics- of
ancient numerology remain in our
society. For instance, very few
hotels or apartment _buildings
have a floor numbered 13. '

. One of the earliest problems that would today be classified as
belonging to number theory is the problem of determining "Pythagorean
triples." This designation, 1nc1denta11y. is qbt gngirely appropriate
since the problem had been studied by the Babylonians several centu-
ries before Pythagoras. The problem is that of finding number'triples ‘
such as 3, 4, 5 for which 32 + 42 = 52. The Babylonians had discov-
ered some Pythagorean triples consisting of relatively large numbers,
for example, 12,709, 13,500, 18,541, and ev1dent1x knew something of
a general method for constructing them. ’

, The prime numbers, that is numbers such as 2, 3, 5, 7, ...
which have no divisors other than 1 and themselves, were the subject
of systematic study by the Greeks.' Three of the thirteen books of
Euclid's Elements (VII through IX) were devoted to number thedry. and
here we find Euclid's algorithm for determining the greatest common
factor of a pair of counting numbers (see Activity 13) and a proof of
the fact that there are infinitely many prime numbers (see Paft B of
Activity 5). About 100 years after Euclid, Eratosthenes developed a
"sieving" procedure for identifying those counting numbers that are
prime (see Part A of Activity 5). As a result of their'interest in
numerology, the Greeks investigated the proberties of special types

<
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of numbers, for e&amp]e.'the perféct numbérs, which are the sum of
all their divisors (including 1 but excluding the number itself, as
6=1+2+3and 28 =1+ 2+ 4+7+14).
“In thg\seventeenth century.!;he earlier work on number theory
was orgaﬁized and significantly extended, and the outlines of what is
now known as the mathematical area of number theory began to take

sﬁape. ‘The French mathematician Pierre de Fermat (1601-1665) is con-
sidéred by many to be the founder of the theory of numbers as,an in-

dependent mathematical area. To convey the flavor of his researgh,

it is easiest to give two of his results, which can be understood T8

without any specialized knowledge. The two we have selected are:

squares of Four whole numbers.

o

. If p 3is a prime and of the form 4n + 1 where n is

a counting number, then p can be expressed as the sum of
the squares of two counting numbers. This expression is
unique up to the order of the terms in the sum. No prime

e e e 2 e e e e el

of the form 4n + 3 can be so expressed.

In addition to the many -theorems for which he provided proofs,
Fermat is famous for a theorem, '
or actually a conjecture, for
which he did not leave a proof,

at least so far as we know.

MK+nK = pK
ONLY WHEN K=
AND K=2
I THINK

It is easy to make conjectures
in mathematics; it is diffi-
cult to make conjectures that

influence the development of

an area or stimulate a great
deal -of significant work.
Fermat's conjecture, also

known as Fermat's last thédrem.

. a o~ *
22 oo . [N
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" is of the latter sort. It is:

K4 pk a,pk has solutions m, n, p -

The equation m
in counting numbers only for k =1 and k = 2. (ex-
ampTes for k =1 are 3+ 2 5 and 20 + 21 = 41,°

and for k =2 are 3% + 42 = 52 and 122 % 52 = 139),
Conjectures abound* in numbér theory. Several others are ment ioned in
the exercises of the unit. > . '

Like most areas in mathematics, number theory does not exist'in

+  1{solation, but has significant cohnections with other areas. As an
j1lustration we mention the number- theoretic aspects of certain geo-
- metric constructions.

A Euclidean construction. is a geometric constfucttpn-that can be
performed using only straightedge and compass. The German mathemati-
cian C. F. Gauss (1777-1855) proved that there is a Eucligean con-

.struction of a regular polygon with N ‘sides if and on]yuif N s
the product of distinct primes of a certain type and 2 raised to some
power. ThekGreeks knew the Euclidean constructions for polygons with
2, 4, 8, 16, ... sides and with 3 and 5 sides. Combining these they.
éoulq construct polygons with{3-2§ and 5-2° sides, where ¢ 1is any

whole number. R

. Magic squares such as this one whose ’

/ rows, columns and diagonals sum to 15, 219 4} ' ,L
have a long history. Some date back to .
ancient China, while others ;re,much more 7 5 3
recent. Benjamin Franklin consE:ycted 6 el
some remarkable magic squares and also -
magic circles (see the reference Invita- o e

tion to Number :Theory by OZ“Ore).

There remain many unsolved prob]é“
the subject qf.current mathematica] ‘research. ItTis interesting that
the modern digital computer is a useful tool for this research. The
ability of the computer to carry out millions of arithmetic calcula-
tions each second permits the use of techniques that are completely
unfeasible by hand or with desk calculators.

ory that are

. 10 -
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\\;,J§olv1ng‘act1vi¢1Es with a

Certain- topics-from number theor}, for ekample, dad and even
numbers, multiples and factors, have gradually become a part of the
elementary curriculum. ,Recently, other topics, such as primes and
factor trées, have been added. One réason for the inclusion of
selected topics from number theory is that they can be applied to
other fopjcs in the elementary mathematics curriculum. For example,
odd and even numbers, hultiples. and factors are closely related to
the basic ideas gf mu]tipljeatiqn and division of whole numbers.

Other examples are. the use of the greatest common factor in simplify-
ing a common fraction:

8_24_2 a
12 3-4 3
(here 4 is the greatest common factor of 8 and 12), and the use of the

ators:
5 4 1
I Ty

(Here 24 is the least common multiple of 8 and 6.) In this example, the

least common multiple of 8 and 6 was used as a denominator in appro-

Priate equivalent forms of g and Bu

Another reason for including topics from number theory in the
, e]emehtary school is that ‘
there are'many interesting . , ,

and challenging problem-

umber-theory flavor. “For
example, we mention activ-
ities with figurate num-
bers (see Activity 9 and
the Appendix) and the games
of Multo* and Prime Drag**.

*Multo. Urbana, I11inois: University of 1111n01s Curricu]um Labora-
tory/Booker T. Washington School, 1969.

**prime Drag. Palo Alto, Cal.: Creative Publications, Inc., 1969.

o

1.
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Althodgh there are obviously mofe alternatives at the upper ele-
mentary grades, there are nevertheless many number-theoretic topics
and situations that can be explored-with primary-level children. For

example, the propertﬁés of even and odd

| EVENS  0DDS
numbers can be developed with the use v
of rectangular arrays. The even numbers ﬂ [E]
' [
such as 2, 4, 6, can be represented by '
a rectangular array with two complete e e ™
rows;y but the odd numbers, such as 1, 3, o o oo
5, cannot be represented by a rectangu-
) e e O [ 3
lar array with two complete rows. Using e e o . .lja

rectangular arrays can aid in establish-
ing the arithmetic properties of the ..
even and odd numbers. For example, an even number added to an even

' number results in an even num-

Te s . 4 ber, an odd added to an odd re-
ole o even + even = even sults in an even, and an even

added to ap odd results in an
ole o o " :
'L:l' . odd + odd = even odd. Also, there are interest-
T ' ing number -patterns on hundred's
') 01_1 even + odd = odd charts and ca]enggrs. ‘For ex-
il hadihd - ¢+  ample, have you observed, that

I's

on a 10 x 10 hundred's chart

none of the numbers surrounding 24
is divisible by the factors of 24,
4 and 6, while on a calendar there
are numbers surrounding 24 which
are divisible by 6 (18) and 4 (16)?
Notice also that the numbers on one
dfagonal through the 24 on a calen-
“dar are divisible by 8@~ﬁhereas none
of the numbers on the other diagonal
1s divisible by 8, but they are all

1223




divisible by 3. Is there an ex-
planation for«these facts?

—

R e
R . . "

CALENDAR

~ Finally, there are problems in elementary mathematics that can
be solved directly by number-theory. For example, hdw mahy.diffgrént
rectangles can be construc ted- with sideéfofrintegra1 measu}es and an
area of 24 square units? Are“there more recSan1es with different
shapes with area 27 square units or 24 square units? It is clear =
that the answers to these questions are related to the number of
divisors'of 24 and 27. In fact, since 24 has eight divisors, the num-
ber of different-shaped rectangles with'afea 24 is four. Why? Simi-
larly, the number of different-shaped rectangles of area 27 is two.

There are activities in the unit designed~t6fexpand'your yiew of

number theory.and to provide you with ideas and techniques that may
‘help you appreciate the number-theoretic content of the mathematics
you will meet in and out of the classroom. Ther® are also activities
whose primary goal is-to develop material that is frequently found
in elementary textbooks. Fﬂna]]y.:there are activities whose purpose
is to alert you to some aspects of the problem-solving process.

¢ . | ‘




, Sectionl -
o DIVISIBILITY, PRIME NUMBERS
| , 7. AND FACTORIZATION

The prime numbers are the multiplicative building blocks of the count-
ing numbers: if a countinglnumber is factored into a product of small-
er némbers each of which can be factored no further, then the smal]er
numbers are prime numbers In addition to this basic property, there
are many other fascinating relationships and patterns involving prime
and counting numbers that ar¢ interesting in their own right.
The purpose of Activitjes 1 through 4 is the development of the
‘ concept of prime number, the prime numbers as "building blocks" in *
. . the counting numbers, and the related idea of divisibility. The ques-
tions "How many prime numbers are there?" and "How are the prime num-
sbers distributed in the sequence of counting numbers?" are consid-
ered in Activity 5. The topics of- Activity 6 are the notions ‘of
1e$st common multiple and greatest common divisor and their relation-
ship to prime numbers and prime factorization. - The final activity,
Activity 7, is a seminar, which reviews the section and asks ques-
tions related to the study of number theory as an 1nte11ectua1 activ-
ity and the role of number theory in the elementary schoo] Distrib-
uted through the section there are three projects that you will be .
asked to complete outside.of class. They are more substantial than
exercises and should serve as an introduction to some of the kinds of
quest1oniﬁgpd\mathematica] problems lying near the surface in pumber -
thaory.

+

-
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MAJOR QUESTIONS

1. Discuss'in Jour own words the' statement "The prime numbers act
" as building blockss for the counting numbers." Give exampledito
11Tustrate your discussion. Are there other sets of qﬂhber5~
‘that serve as building blocks for the counting numbers in a dif-

ferent sense?

-

Oiseuss {re advantdges of using trains or tiles to introduce the
concepts of prime and composite numbers with children. In your
discussion, compare'fhe method of trains or tiles with a method
that proceeds by definition and examples., ) o

Dfscuss, how a multiplication table could be used to '{ntroduce
the concepts of prims and coﬁposite numbers to children! Compare
this method with others out\@ged 1n the section.

1

Is it WOrthwhile to introduce the concept of prime number 1n the
elementary schoo]? ‘Support your answer.

co

rdentify those number theoretic concepts that are suitable for
1nc1us1on.1n\the primary grades. For example, you might cite . ‘
even and odd numbers. :

6. How could Cuisenaire rods be used to.introduce the idea of the
Teast common multiple of .two numbers?

)

/ ‘7; From your general knowledge of mathematics, find amother {instance
(there are several) in which a set of mathematical objects or
concepts can be ' constructed" in some sense from a proper subset
of that set. [The counting numbers*(the set), primes (proper “
subset), an fhe operation of multiplication (method of con- ) !

" structing) Arovide one such instance.] Oescribe how the whole
Bet is ,to constructed from the subset. Illust%ate your ex-
planation with examples. o

26
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f"ll'-, DIVISIBILITY | S

FOCUS: e ] o v : L . ‘\

Many of the facts, prob1e . and results of e1ementary'number'theory A\
1nvo1ve the idea and propert1es of d1v1s1b11aty In, this act1v1ty we ‘
co]]ect and oggan1ze some information that will be used thr0ughout y
the unit. » : S N '
DISCUSSION: - T e
When ‘one divides one counting number by another, the sped‘a] case of - s
a zero rémainder is suff1c1ent1y 1utErest1n94to merit further study b
1
For.example, 15 divided by 3 has remainder zero, as does 28 divided
by 7. In such circwnstances we say that 3 d1v1des 15 evenly, or as

we prefer here, s1mp1y 3 divides 15. Likewise we say 7 d1v1des 28

We introduce the notation 7|28, which shou]d be -read "7 d1v1des 28," i
“to express this d1v1s1b1h;ty property symbolical]y S1nce 28 = 7 x 4

we also have 4!28 In. genera], ift.-a and b. are count1ng numbers ,

then &b means. that - divides b, or equivalengdy, b is amul- ]
tiple of -a. o , S ;?ﬂ S .

/ | A A
. EXAMPLES )
35 = 5.7, and consequently 5|35 and 7|35.
, 20 = 5.4, and consequently 5|20 and 4]20. .
Since 20 = 5:2-2, we also have 2|20. - . -

/

Since 21 ='3-7 and 6 = 2-3, it follows that 3|21 and 3|6 Is it also
true that 3| (21 + 5) qnd 3[(21 - 6)? Using the fact that 21 + 6 = 27

- 3.9 and 21 - 6 = 15 = 3.5, we see that 3| (21 + 6) and 3|(21 - 6).
Does this hold for numbers d1fferent from 3,.21 and 6? “The answer is '
yes, and a genera] statement of the property exemplified above wjth -

o~
"




-~ 3,21, and ?g;s as follows: o ‘
Let \a, b, ¢ be counting numbers, a 7 0. If a|b
and a|c, then al(b +c) and al(b - c).

To help us understand why this is ﬁme case, we will rewrité the argu-
ment given above for the spec1a1 case a = 3, b=21, c= 6 1n
one column and the argumeht for arbitrary a, b, t inan adjacent
column.’ A ‘ .

Sgecia] Case’ ‘ '\ v - Generat Case

Since 3|21, 21 is a multi- .| Since a[b, b -is a mggt1ple ‘
ple of\éi_ZI = 37 - of a3~ suppose b= m'a,

/ where m is a cpunt1ng npmber
Since 316, 6 is a multiple Since alc, ¢ 1is a multiple
of 3; 6 = 2-3 v of a; SUpposé c= n-a; where
' n is a counting number

21+ 6=7-3+23=09.3, b+c=ma+nas=(m+n)a
s0 3| (21 + 6), by the def- | so a|(b+ c) by the defini-
inition of divisibility tion of div151b111ty '

. \21-6=73-23=53, | b-c=ma-na=(m-n)a,
O 3|(21 - 6) ' so a|(b - c)

DIRECTIONS:

1. Write out an argument as in the Special'Casef%bove for a =6,
b= 42, c=18. . " . -

2. Try- to write out an argument, as in thé Speciaﬁ Case above, for
a=6, b=42, c=15. What iswrong? : .o

LR

. 3. If a]b and ajc, does it fo]]ow that a|b .c? why?

4. Give three examples that help you to conJecture an_answer to the
question: If a|b and aj(b + c), does ajc? Lo s




. If alb and bIc, does ‘ajc? Give three examples; then answer
the question. ‘

If alb and alc, doeds, ql(Zb + 3¢)? G1ve an examp]e, then
write out an arguntent’ 1n two ‘columns, as.above, which prov1des
an answeri. to the general assert1on

e e
e
'
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ACTIVITY 2 :
PRIME AND COMPOSITE NUMBERS e

FOCUS: o . : ‘ <
Prime numbers can be viewed as.ghé'basic_bu11q1ng blocks or "indecom-
posable" counting ‘numbers. In this aétiyity,.&e introduce prire and.
composite numbers by wbrking with either a set of Cuisenaire rods or

a set of tilgs. These two ways'of introducing the ideas, both of
which utilize concrete materials, are easily adapted to the elemen-
“tary tlassro@m. - .

* MATERIALS: » o ‘ .

. Set of Cuisenaire rods and at Teast 20 tiles.
‘DIRECTIONS: : L . ;

P - R iy ’
You (6r your group) will be assigned either~Part A or Part B by your
instructor. After complgting the assigned part, discuss and compare

© your work Mﬁth someone who has completed the other part.
PART A: Primes and Tiles

Tiles can be arranged to form reétangylaf arrays. -The arrays shown

in Figures 1 and 2 below are rectangular arrays, while the array
shown in Fiédre 3 is not. (Rectangular arrays can be presented to ,
children as chocolate bars--a candy bar divided into sections. ) We
will always think of rectangu]ar arrays as those in which the sides

of the tiles are parallel to the edges of the table on which you are
working. ' . : . ) |

~

M ‘ . |

2 x 3 array , 1 x 4 array not a rectangular array
Figure 1 Figure 2 ' Figure 3

’ ‘ 2030 .‘ o | . "Ol

Ex]




F e . ‘ i

Take two of the tiles and determine how many rectangular arrays

there are if a 1 x 2 drray (two tiles across and one tile up) is .

considered different from a 2 x 1 array (one tile across and two
tiles up). Deduee the set of divisors of 2 from the sizes. of -
the anrays. This information has been recorded in the line
labeled 2 in the leftmost column of Table A (next page).

Take three tiles and determine the number of rectangulqr arrays
which can be formed from three tiles. "Record this information

..» twelve tiles, and complete Tab]e A.

Use Table A to identify those numbers between 2 and 12 (1nc1u-

sive) that have only two divisors: 1 and the number. List them.

A11 counting numbers with this property are called grime numbers

Use Table A to 1dent1fy those numbers between 2 and 12 (1nc1u—

'sive) that have more than two divisors. Al counting numbers

with this property are ca]led composite numbers. Ftnd ;hose com-
posite numbers that have an odd .number of divisors. What is an-
other way of desci1q1ng,these'numbers?'

There is one counting number that hes less than two divisors.
What is 1t? This number is placed in a class by itself since it

"is neither prime nor composite according to the definitions.

-

w7

21 '

in the line labeled 3 in Table A. Continue for four, five, six,

& B
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TABLE A

Number of

Number of

‘Dimensions

Number of

Rectangular of Each Divisors
Tiles Arrays Array inisors : p
2 2 2] 2 T, 2

4

11

12

(1975), p. 232.

It is interesting to note that activities 1ike this one actually ap-
pear in elem@ntary text series, cf., Heath Elementary Mathematics IV

22 §3£3




PART B: Primes and Trains

‘, In this part an arranbément of ,equivalent Cuisenaire rods-(roas of
the same lengthr), placed end to end will be called a train. Three
trains of the same total length are shown in Figure 4.

- &

= q
B

Dark Green

Figure 4

) [
There is one more train of length 6. Can you find it?

Trains can bé described mathematically by multiplication. “For ex-

ample, in Figure 4 we can describe the top train by
R . . “u

.I ’ 1X6(=6), } )
.the middle train by ’ ' ‘

&

3)(2(:6):

]

and the bottom train by ‘
6 x1 gi 6).
In each case the first figure on the left refers to';he number of

rods and the second ffaure refers to the rod value. The product in
parentheses gives the total length of the train. That is,

3 X ? (= 6)
§ Numper of Rod  Length
the train value of train
(é’/. 23




.
r

Number-Color Code
o ' White is one unit '
White (W) 1 Dark Green 6
Red s 2 | Black . 7
Light Green 3 Brown 8 .
Purple ' Blue 9 NE
Yellow 5 " Orange 10 i

How many trains have the same total length as a red rod? Deduce
the divisors of 2 and record this 1nformat10n in the line la-
beled 2 in the leftmost column of Table B. '

Repeat (1) for the light green rod. Continue for the rods with
values 4, 5, 6, ..., 10. Rods of lengths 11 and 12 are pictured
below. Use them to complete Table B.

Rod with value 11

Rod with value 12

Use Table B to determine which numbers between 2 and 12 (inclu-
sive) can be the length of only two trains. Such numbers are
called prime. How many divisors does each prime number have?
(Be sure to count 1 and the number itself.) ) .

. Use Table B to determine which numbers between 2 and 12 (inclu-
~ sive) can be the length of at least three trains. Such numbers
are called composite. Some composite numbers can be the length
of an odd number of trains. What is another way of describing

these numbers? '

A prime number has exactly two divisors and -a composite number

has more than two divisors. There is one counting number that

has exactly one diviso;. What is 1t? It is placed in a class

by itself since it is neither prime nor composite, according to
the definitions. ‘




i : 2 TABLE B

" " Color of Rod Number of Number of

. Trains of
Rods Number Equivalent Rods< Divisors

Divisors

@ : -
] — .

Red 2

10

11

‘ B Y

.

It is interesting to note that activities like this one actually ap-
pear in elementary text series, cf., Heath Elementary Mathematics IV

(1975), p. 232.
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ACTIVITY. 3 .
FACTOR TREES AND FACTORIZATION

FOCﬁS: ‘, S’

The idea of the primes’aél"b id1ng blocks" is pursued in this activ-
ity, and the representation/of any counting number as a product of
primes is introdyced., Facfor trees and their relation to factoriza-
tion will be cghsidered. This -activity consists of three parts:

Factor Trees
FactoriZation Into Primes

Exponential Notation and the Prime Factorization
Theorem

PART A: Factor Trees

In comgtructing factor trees, we shall not admit| factoring into fac-
tors one\of which is 1. For example, we 'shall nqt admit7 = 1.7 or

DISCUSSION:

The construction of factor trees such as those shown on the accompany-
ing textbpok page (page 28) can be an interesting and enjoyable child
activity in itself.” Moreover, constructing a tree is a quick and’
easy method of finding the prime factors of a number. In this acti
ity, the emphasis is on the construction of factor trees and on the

. relation between the, factor trees of a number and the factorization of
that number into prime factors. The use of the prime factorization
of numbers in adding, multiplying, and “feducing“ fractions will be

* ~—

the topic of Activity 6. . .
)




DIRECTIONS:

°"

Examine khe textbook page reproduced on page 28 of this unit.
For eachlof the four numbers below, extend its factor tree unf11
you havef obtained all the prime factors of the ?umbers

. 210 7 , ' 858

/\ |
5 42 6 143

\

' 32
2925 ),7\ 1785 -
\ /N

5 585 ‘ 3 595

13/ \ -

v

Let us agree that two facter trees are different if there is at
least one number that is factored into one pair of factors in

one tree and into a different pair of factors in the other tree. .,

For example, consider the three factor trees of 12 shown below..

2 12 12
- s/\z 4/\3 3/\4 '
/' \ /\ / \-
2 3 2 2 2 2
(1) (1) - (1i9)

Factor trees (i) and (ii) are different, while the trees (ii)
and (111) are not different. The above example shows that, com-

‘posite number may have more than one factor tree; j.e., it may -«

have at least two different factor trees.

. . 27'5377




_ Performance Objective: To use a factor tree

A factor tree Factor Trees

can help,ufﬁ find
the prime”tactors
of a number.

Copy and complete each factor tree.

1. 20 2. . 2. 3. 32 Lo
7N\ | N, .- N ,
4, 5 : 6 4 , 4 8 .
Z\ S /N YV VA
? A A Y o2
v . T /\?
EXERCISES o
Copy and _cbmplete.
v 1 2. 42 3. 45
7N 7\, N
/ N\ v/g\ /6\ ot /9\ ?
ror o P [
4 48 - 5. . 63 6. . 54
7N S \9 & g
?/\? ?/*\4- ~ I - ?/\? ‘
/\i ? ? ) \
77 1
Make a factor tree for eacﬁ. ‘
1.8 2.124  3.144 4.108

\
(© 1973, General Learning Corporation, Morristown New Jersey.
Stlver Burdett Mathematics; Grade 4, p. 299. Reproduced w1th , |

permisé?bn . .
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. A factor tree will be called ¢ omg]ete if the numbers at
the ends of the "twigs" are all prime numbers.
(i1), and (i1i) above are’all cqmpléte'factor trees while -

is ot complete. since 4 is composite.

For example (ﬁ).

a) Find all \@e diffeyent, complete fact?r trees of 30. (Hint:-

There are three.) .

| b) Find-all the different complete factgr trees of 36. (Hint

,ffhere are.six.) : :

. ‘ oy
¢) Find all the different complete factor trees of 72.

¥

Find three composite numbers that do not have at least two dif-
ferent factor trees. What is their tommon property?

. Is each prime number already a. complete factor tree? Given any

whole number except 1, do you think %hat it is possible to con-
struct a complete factOr tree for thaq number? Explain your

reasoning.

Write each of the following numbers as'a product of primes. °

30

]

39 = “
60 = “ o
72 =

.

Given any composite whole number fs 1t possible to write it as |

a product of primes? Explain your reason1
answer to this question to the answer you
Q;guestion in (4) above.

6= .. ) .

n;a
g

nd compare your

‘j/ﬁﬂ“\

t} the second - ‘:




6. In considering factor “treéé"v% &
did you ever ask yourself '
wﬁether the arboreal metaphor
really stands up? That fis,
you may have asked yourself _
why factor trees do not grow
upwa?d if they are supposed
to be trees. In ‘'some’ text-
books factor trees do grow
upward. Consider the advan-
tages and disadvantages'of
each notation. When trees are
used extensively {in class dis-
cussions the‘var1o:Z/barts,

» are given names such as branch,

fork, and tw1g.\

~

PART B: Factorization into Primes

DISCUSSION:

After your experiénce in constructing factor trees in Part A, you
probably came to feel that you can construct'a‘comp1ete factor tree
for any counting number greater than 1. Although the terminology of 2
ore appropriate for 4se with children, .there is an _
and a conceptual ease’associated with the factoriza-
Indeed, another way of representing the factors
fs to write the number as a product of primes.
For example, 30 = &5 and 84 = 2-2-3-7 are representations of 30"
and 84 as products 6P primes. Each counting number can be so repre-
sented, and a formal proof of ihis fact is not diffjcult; (Intuftive-
1y, one can argue that if a number is prime, then the represenf%tiqn
is complete. If not, then it is composite and c0nseq0ént]y’1s.the?
product of .two strictly smaller numbers. Each of thege is either N\:
prime or composite. If eithér factor is composite, théy:that factor ' . I
~mlst be factorafT&—1Ato smaller numbers, and so on. Eventually a
T T '

factor trees isg4

economy “of space
(. tion point of vigw
of a counting numiyy

v

-y

> 30

10 ; ’
. S
~ . N .




stage must be reached at which all the factors are primes. ) Th1s is’

‘ the cont),t/of the Prime Factor1zat1on Theorwch we nowW state:’

If N is a counting number greater_than 1, then N can
be written as a product‘of primes; that is, there are
. prime numbers Pp» Pos wees bk such that N = P1P2 " *Py-

Note that- k may be 1; that is, if ;N is pr1me “then the
factorization is complete.

For examp]e, using the factor tree (i) of Part A'we can wr1te 12 =

.2-2-3. :
DIRECTIONS: o o -
1. Write out a prime Factorization of 100.
100 = . , ‘
secesssssasenaees e | ....... seccceesee . ............. : ............... ‘ .../p.,..........- ........
Comment : , : S

. You may have observed in Part A, especially in exercise 2, that no
‘ matter how the factor tree for a nummgerhis constructed, one alw.ys-
ends up with the same prime factors and the same number of eacr fac-
tor.  For example,'the three factor trees for 30 (Exercise 2(b)) all
involve the prime factors 2, 3, 5. A similar-resulE~ho]ds in general.

~ . . .
If N is a counting number greater than 1, then every e
prime factorization of N is the same except possibly
o for\fhe order. of the factors. : : o

------------------------------- ,.-.-------------...--:---------------------,-------------5--.--
R . . \ B

\ .
221,36 = = 6-6. Hence a number can have two ¢ omgos1te factorlza-

tions that are not the same (even if the fattors were reordered)/,{L\
Find another number with at least two dﬁfferent compos1te fac-

'tor1zat1ghs - .
' «
3. Why are the primélnumbers called prie ahd the composite numbers

called composite? Alternatively, do the names "prime" and "com- N
posite" provide reasonable descriptions of the characteristics

of the corresponding numbers?

< ' 31




.If one jntenprets a,prime'to be its owu'prime factorization, .
can he state that “every counting number greater than 1 has a ' ‘
- prime factorization"? Can he, stéte that "every counting number '
greater than 1 has a unique prime factor1zat1on (1f the order of
the prime factors is d1sregarded)"7 ’ ’ ’ . "}

5. In what’ respects wou]d the pere factorization resu]ts be 1ess S i

satfsfy1ng if the term "prime" had been defined. so that the num- - .

ber 1 was a pr1me7 {
4 v

PART C: Exponential Notation and the Prime
Factorization Theorem

DISCUSSION: - : . )

A more compact representation of cunposite~numbers iifgoesible if one
uses exponents. For example, in Part B we wrote 12 = 2 2-3 and, R
using exp0neht1a1 notation, this can be written as 12 = 22 3. Here

* the product 2-2 has been written in exp0nent1al form as 22 In '

general, if n'is a count1ng_number and nen--en ids a product of., : .
m factors each of which is the number n, then, using exponential ‘
notation, this product can be written as nM. Two examples are: 4

\ . 250 = 2:5.5.5 = 2.53 and 16 = 2.2.2.2 = 2
DIRECTIONS: i '

1. Factor each of the fol]oyingvbomppsite numbers and express the

. result using exponential notation. s
39 = )
a“" °
60 =
A .
512 =
27 = ‘ )

2.- State the prime.factorization theorem (Part B, p. 31) using ex-

ponential notation. (

|

\

-
' 4




.

3. Let p ‘and q be primes and b ,a counting number. If. p|b -

. ' and qlb, then p-gjb. -

. i) Verify'thi'.\éi assertion in three ‘special cases.

.11) Show by example that the assertion is félse (in general) if ,
p or g is composite. ' "

‘1'1'1)>G_1'-ve an argument that justifies the assertion as stated .in
the generall case (i.e., do not consider more special cases).




PROJECT 1
E-PRIMES

L,

@

COMMENTS o s

In the previous act1v1ties of this.unit, the notions of prime number
and factor1zation with respect to the set of counting numbers have
been studied. Here the concern is w1th the factorization of numbers
in the set E of even counting numbers : = {2, 4, 6,8, ...}. In

o this set there are numbers that cannot be written as a product of two
other elements of the set. For example, 6 cannot be written as a -
product of two other e]emenys of the set. (Of course, 6 =2 x 3, but
the number 3 is not in the set £.) An even number n 'will be called.
E-prime if .n cannot be expressed as a product of elements of E.

For example, 2 and 6 are E-primes while 4 is not since 4 = 2 x 2. An
even number is said to be E-composite if it is not E-prime. Hence,

4 js E-composite. The object of this prOJect is to explore the anal-
ogy between E-prime numbers and ordinary prime numbers. Some specific ’
exercises and quest1ons are posed below. As you answer these ques- -

tions, compare y0ur answers concern1ng E- pr1mes with what you already

know about ordinary primes.

3

.- EXERCISES' AND QUESTIONS

1. Determine the first ten E-primes. (The first two E-prime num-
bers are 2 and 6.)

2. Can every E-composite number be factored into a product of E-
primes? . SRR

3. List several even numbers that have only ggg_factq?ization into
E-primes. (Disregard the order of the factors.) o

4. Find an even number whose ﬁ-prime'factorization'is not unique,
that is, an even number that can be factored into products of
E-primes in at least two different ways. (Disregard the order

i of the factors.)
5. Find a simple test to determine whether an even number -is an
E-prime. (Hint: Use the Prime Factorization Theorem.) .
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 ACTIVITY 4 . . .
g ‘ TESTING FOR DIVISORS . S o
FOCUS :

This activity is 6}gan12ed as a group discovery ‘session.to determine
divisibility tests for several small counting numbers. The goal is
~to develop a method of determining quickly and éasily whether a smail

counting number divides a larger'oﬁe;

- DISCUSSION:

One method of showing that'a number is composite is to find a divisor
(different from'1 and the numbér)._ Also, even if a number is.knewn
to‘be cohp%site. one may be 1ﬁterested 1n5deferm1n1ng its factors.

In this activity you will develop some divisibility tests (i.e., means
of determining rapidly and easily whether one counting number divides
ahothér). 'ﬁor example, does 2 divide 720? Does 5? It is not neces-
sary to actually perform the division to answer the questions. Indeed,
the divisibility of a number by 2 and 5 can be determined simply by
inspecting its digits. Several such tests will be developed in thig
activigy. . ‘ '

-

DIRECTIQNS: : .

After giVing a brief introduction to the topic, yohr instructor will

Qd1v1d§'the§ql§;s into several groups and assign small counting numbers

to each group for investigation. For example, suppose that 2 is one

of the numbers assigned to your group. Your problem is to determine

a divisibility test for 2, that is, a method for determining whether

a counting numbe} is d1vi§3b1é by 2 by simply examining its digits.
Appoint one member of your group as a discussion leader and an-

other as recorder. It is.likely that most of your time will be spent

in making guesses and working examples. Working examples and study-

ing special cases, either independently or as a group, is a profitable
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activity. Do your work with pencil and paper so that you can share
your ideas with others. 7 '

If you find yourse]f temporar11y stumped, you might ask your 1n-
structor to po1nt out some worthwhile questions to ask and/or he]pfu]
directions in which to proceed. Do not expect your instructor to
provide you with tests! ‘

If your group discovers a workable test, report it to your in-
structor. A summary of the results will be prepared, and after the
group activity is completed the entire class will discuss the results.
The question of justifying the tests will be considered. -You should
keep a record of the tests in the table "Summary of Divisibility

Tests" on page 37.

" TEACHER TEASER -
2 - Is n® - n always divisible by 2?7
“‘% Is n4 -n ‘always divisible by 4?
\V Is nd - n always divisible by 37
Is Vns - m always divisible by 5?
Is 1 - n always divisible by 17 °
Is there a patgerﬁ?
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TABLE
SUMMARY OF DIVISIBILITY TESTS

DIVISOR

TEST




Some applications of the divisibility tests to factoring prob-_‘
foilow below: ' :

1. Use the divisibility tests developed above to determine the divi-
sors of each of the following counting numbers and faCtor each
into a product of primes.

a) 78

c) 12,760

d) 342,540




0 >

S

b . ’
.-2. If two counting numbers have the same digits but in the reverse
‘ ‘ order (for example, 254 and 452), then their difference (the
larger minus the smgller) js divisible by 9.

a) Verify this assertion for the number 563. _
b) Verify this-assertion for the number 378,501,'

c) Try to justify the assertion for a general three—digit‘number
N = 100a, + 10a; + 3g> where a, > d,.

e

- e eEm R . Gt ey SRy e S S GRS e pe—. m, gpae e
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PROJECT 2
HOW MANY NUMBERS TO TEST | ‘

A
g

COMMENTS

_When one {s faced with the problem
of finding a1l of the divisors of

a counting number N, there is an
obvious advantage in using a sys-
tematic procedure. If one simply
tries potential divisors of N at’
random, there is a high 1ikelihood
that some divisors will be missed
and, especially if N is large,
some effort will be duplicaged.
There are several different system-
atic procedures, but one of the most
natural 15‘“0 begin with 2 and try
each counting number in ofder to
determine whether or not it is a
divisor of N. It is a useful fact that one need not try all the
counting numbers smaller than /N to determine all the divissrs. Iﬁ
fact, one can stop well short of N. We can now formulate a precise

question.

QUESTION

In order to determine al} of the factors of N by testing
each counting number in order, beginning with 2, what is
the 1arges§,count1ng number that must be tested?

-

Denote this largest number that must be t;sted by L(N).

A useful aid in answering the question is contained in the following
observation. If ene knows that a counting number p 4s a factor of

14 .
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N, then one can determine a counting mumber q such that p-q = N.
Indeed one can take q = N/p. It follows that #f one knows the set
of all factors p sugh that p-g=N and p Sgq, then one knows
the set of all factors of N. Stated somewhat differently, every
pair of factors of N contains a "smaaler ohe" (or two equal ones).
A knowledge of this “smaller one" determines them both.

EXERCISES AND QUESTIONS

1. Comp]ete‘the table below.

Number %o : Smaller of | .
N Pairs of Factors of N ‘ the Pair L(N)
1, 24 1 4
2, 12 2
24 3, 8 3 v i
4, 6 4
12 ' o~
36
60

\.r

For each N the entry L(N) 1in the last column can be obtained
by inspection from the third column. According to its defini-
tion, L(N) {s the Targest of the entries in column three for
that N. '

41
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2. For a count{ng number N, let n be the largest counting num-
ber such that n-n S N.

- /Jf LN = 24, what is n?

If N =12, what is n?
If N = 36, what is.n?

If N=60, what is n?

In each case how does n compare with L(N)?

3. Justify the following statement:

If p-q = N, then either p orl q must be less than or ' ; |
equal to n. N ' | |

4. .Answer the Questioh posed on page 40 (Hint: , Can you conclude |
|

that L(N) S n?). .

5. As an application of the above, determine the Targest countiﬁé v
numbers that must be tested to find all the factors of each of )

L3 - |

‘the following counting numbers: |
. . , -
100 64 1008 80 230 _ ‘ |




T ACTIVITY 5 ,
‘ DISTRIBUTION OF -THE PRIMES

s
.

-,

FOCUS: ~

Once you, have absorbed the 1dea of a pr1me number, an 1mmed1ate ques- -
tion is "Is there an easy method to detennine which numbers are
primes?” This turns out to be a question for which there i3/no en- .
tirely satisfactory apswer. Unlike theleven numbers (multiples of 2)

or the multiples of 3§Qr\if/the prime n&mbers are not uniformly dis-
tributed in the sequence of counting numbers The focus of this ac-
tivity is to identify some properties of the set of pr1me numbers,

The activity consists of three parts the use of a "s1ev1ng"
method with a takle of counting numbers to identify the pr1mes includ-
ed in the table; an 1nvestigat10n of the number of primes; and an’
1nvestigat10n of the occurrence of long,str1ngs of cgnsecut1Ve compos-

ite numbers.

MATERIALS:

Set of Cuisenaire rods.




PART A: Identificat1on of\ _e Pr1me Numbers
in a Table of COUnt1ng Numbers

DIRECTIONS: » L . _ S

1.

7.

Thd goal ‘is to obtain al] of the pr1me numbers between 2 and 103
by‘trossing out all the composite numbers in ‘the table ok page
45. “This table of the first lqg7x ctually 2 through 103) count-
ing numbers, s arrangéa in $ix

_ten columns, in order to better display some of the.features of

the distribution of the primes in the sequence of counting num- ‘
bers. Find a systematic method to identify the primes in the
table Mnd write out a careful description of the method and why

it works. , - .o

Iy //
Why might your method of identifying prime numbers be called a
"sieving" technique? ' '

Find several patterns in the table and 1ist them, For example,

o, . : :
where are thg even numbers? Where are the multiples of 37 of 52

Where are thé prime mumbers?

Using ‘this table as a guide, complete the following statement:
every prime number greater than 3 is either one more than or
one less than a multiple of

How many primes are there between 2 and 100 (inclusive)?
Every prime number other ihan‘-‘nman‘ . ‘{
2 isodd. Why? Two consecu- ‘

tive odd numbers that are

primes are called twin primes.
For example, 3 and 5 are twin

I mmmu "

primes. List all pairs of
twin primes between 7 and 100.

ik
i

A fa@}us conjecture due to a Russian mathematician named GoldbacH

{s that, every even number greater tham 2 {s the sum of two

44
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~ pirimes. "For example.012 =5+ 7 and 20 = 17 +3! Write eaéhA
even number between 30 and 50 (1nc1us1ve) as the sum of two - R '
primes. Goldbach's conjecture rema1ns unsettled. That is, no . ‘
even number has been found that cannot be expressed as- the sum
of two pr1mes, and no proof "has been found- that every even num- -
ber can be ) expressed. R S o e

8. With the exception of the pair'3, 5, the sum of any'pairvdf twin
primes s divisible by 12. . o
a) Verify this assertion for three pairs of twin primes. |
jb) Give an argument that justifies it in general. ‘ 5

9. Another conjecture by Goldbach (also unsettled) is that every
' odd number greater than 7 is the sum of three odd primes. For'
‘example, 9 = 3 + 345 and 15=3+ 5+ 7. wr1te eace/ﬁdd num-
ber between 31 and 51 (1nc1us1ve) as the sum of three odd;primes.

10. Do the challenge problen at the end‘qf'the%ectivity (page|51).
’ PART B: The Unlimited Supply of Primes .
DISCUSSION: o . :

- When children or adults reflect on the idea of prime numbers they .
often pose a question like one of the f0110w1ng

GIVEN ANY PRIME
NUMBER, IS THERE.

ALWAYS A BIGGER
ONE ?

1 v

15 THERE ' A
LAST OR [ARGEST

A 1S THE:ZE

AN UNLIMITED
SUPPLY oF :

~ PRIMES?

(\s THEQE A
FINITE. NUMBEK
oF PQ!MES ,




g' . _ .
To begin, take\a moment and verify that these questions are simply

different forms of the same question, and that if one can be answered-

then all can be answered. Suppose you wish to answer the qyestion,
"Given any prime number, is there alwﬁys a bigger one?" Depending on

whether one be]ieve;'tﬁe answer to be yes or no, one attacks the prob-
Jem differently. If you believe the answer to be yes, then you might '

try tgking various prime numbers and showing that in each case there
is a bigger one. At some point you must give a general proof or jus-

“tification of your conJecture 0On the other ‘hand, if you believe the:
_answer is no, then you might try to f1nd the largest prime and show '

conclusively that there are no larger primes. X p
You may be aware from your earlier work in mathematics {or you
may have guessed from the title of this part of the activity) that
the answer to the question is yes. That is; given any prime, there js
always a 1argér one. To verify this, we will give a method that '

shows that for any prime p, there is a number which is ,

i) arger thhn p, and
ii) a prime

Proposed Method: Given p; find the product of all primes less than

or equal to p and add 1.

Cew

' ' Using the proposed method we can determ1ne “the missing entries
in the following table. G -

N

Given Prime " New Number Generated by Proposed Method

2. 241 , = 3

3 (2-3) ¢+ 1 g = 7 "

.5 ’ (2-3-5) + =

7 1 (2-3-5- 7) 1 =

1o ( ) + 1 -

13- ’ . = 30031 = 59-509

17 ' - : ,
, p _ (2-3-5---p) + 1 =

;L I}
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DIRECTIONS:

"1. F111 in the missing information in the table as far as (and in-
cluding) the line corresponding to the prime 17.

Note that the numbers generated from (i.e., resulting from apply-

ing the: method to) the pr1mes 5, 7, and 11 are all prime, but ' : i
that the number generated from 13 is not a prime. . However, this

number, 30031. contains a prime factﬁr, 59, which is Tlarger than

13. Thus. although the new number generated by the method may ‘ N
not be pr1me. it 1eads to a larger prime number thart we started

with (at least-in “the cases we have exam1ned)

C 2. ‘Is-there-an infinite number of E-primes? (See Project 1 )

3. Additional insight into the proposed method can be obtained by
thinking of the table in terms of Cuisengire rods.or dther con--
-, crete terms. Use Cuisenaire rods to answer the questions and

verify the statements that folldow. Consider the prime number 5
and the newly generated}number (2-3-5)”+ 1. Can 2'be a factor
of this newly generated number? Can 3? Can 5? Consider 3, . for
instance. Since 3 is a factor of 2-3-5, one can build a train
of (2-5) rods of length 3 that has length 2-3-5. From this it
should be clear that it is impossib]e to obtain a train of rods
of length 3 that has length (2 3-5) + 1. Thus, in checking
whether (2-3-5) + 1 = 31 is a pr1me we see that 2, 3 and 5 can-
not be factors of 31. Finallys s1nce 5 is the largest prime such
that 52 <"31, these are the only primes that need to be checked
for factors of 31 (see Project 2).

4. Give an argument for a general prime. p analogous to that given ’ i
above for the prime 5. ’

PART C: Strings of Counting Numbers
Containing No Primes ,

DISCUSSION:

From Part B we conclude that there are arbitrarily large prime'num— !
‘bers; i.e., there are prime numbers larger than any given number. An




image for this might be the mile

)

Suppose that gasoline

markers on. an endless interstate

highway.

is available only at the markers

The conclu-

sﬁon of Part B is that there is
always a gasoline station ahead

with prime numbers.

of you no matter how far you

One might conclude that

travel.

a trip could be arranged by

stations for fuel.

[

However, for such a trip to be feasible, one would have to know the

g kind of question:

a

answer to the followin

Could we pass a string of 1000 consecutive mile markers

without coming“io a gasoline station

)

(counting numbers

1

)?

(prime number

09
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Before deating with this question, answer the following questions in
order to make sure you understand the "gasoline station" metaphor.

e How many gasofine stations are there in the first 100 miles?

e What is .the maximum d1stance'bétween gasoline stations (in the
first 100 miles)?

To ask if there is a string of 1000 consecutive mile markers without
a gasoline station is to ask if there is a string of 1000 consecutive
composite numbers. e

There are extensive tables of prime numbers, which, upon close

examination, will reveal long strings of composite numbers. However,

one does not need to rely on tables; there is an easy way to con-
struct a string of . composite numbers of any desired length We 111us-
trate the method by constructing a string of four consecutive c0mpos-
ite numbers: 122, 123, 124, and 125 are composite. (Note that these
are not the first four consecutive composite numbers in the sequence
of counting numbers; in fact, 24,25, 26, 27, and 28 are-five consec-
utive composites.) It turns out to be easy to show that 122, 123,
124, 125 are composite‘by a hethod that can be generalized.. Indeed,

2[(3-4-5), + 1], so 2l122, -

122 = 120+ 2 = (2-3-4.5) + 2 =

123 = 120 + 3 = (2-3-4-5) +' 3 = 3[(2-4- 5) + 17, so 3[¥23, , -
124 = 120 + 4 = (2-3;4~5).+ 4 7 4[(2-3-5) + 1], so 4|124,

125 120 + 5 = (2-3-4.5) 4’5 = 5[(2-3-4) + 1], so 5]125.

For notational convenience we often abbreviate 1-2-3:4-5 by 5!, and
likewise for other whole numbers: 1-2:3---p =.p! (read "p ‘factorial”).
Using this notation, the above argument shows that 51 +2, 5! +3,

51 + 4,51 +5 are a set of consecutive composite numbers.

DIRECTIONS: o N

1. Use the method 1ntroduced above to- produce a string of six con-
. secutive composite numbers. Find a divisor of each and thereby
show that your numbers are composite.

2. Tell how you would find a string of 1000 consecutive composite
numbers.

Gy S
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CHALLENGE PROBLEM

‘ Sequences of counting numbers that are uniformly distributed in some
sense can usually be degcribed by a mathematical formula. For

example:
Evens ' 2k, k=1,2,3, ..
Squares , K2, K=1,2,3,...
Differences of k+1)3 -3, k=1,2,3, ...

Consecutive Cubes i

Mathematicians have studied the problem of finding a function whose
value for each counting number is a prime. One can think of such a
function as taking the input 1 and providing as output a prime, say
Py taking input 2 and providing as output a prime p,, and so on.
Consider the function g defined by ‘
Ny .2
glk) = k
a) Show that g(k) 1is prime for k =1, 2, 3, 4, 5, 6, and 7.
(Hint: Use the table of Part A of this activity.) In fact

‘ . g(k) is prime for k =1, 2, 3, ..., 39.

b) Show that g(40) 1is composite, and factor it.

(% a

+k+4] for k a counting number.

TEACHER TEASER * / 4 )
v @ , Prime triples are primes of the form .
. : p-2, p, p+2. There is exactly
one prime triple. Find it. Provide an
° oo argument showing that there can be no

others'.

t




~ ACTIVITY 6
AN APPLICATION: GCF AND LCM

FOCUS: ‘ °
The purposé of this activity is to introduce the concepts of greatest
comnon factor and least common multiple and to investigate the rela-
* tion between them and factorization into primes. l ‘
The activity is organized into- two parts Parts A and B develop
(or review, for those students who remember the jideas from their

school mathematics) the ideas of greatest common factor and least
common multiple. Part C relates these concepts to prime factoriza-
tion. '

PART-A: Least Common Multiple (LCM)
DISCUSSION:

Examine the textbook page on page 53 of this unit. Amy computed
%—+ %-by expressing both %-and g-as the correct number of eighteenths.
That-is, she expressed them both as fractions with the common denom-

inator 18. In 1dentify1ng 18 as an appropriate denominator she might
have argued as follows: The fraction —-15 equivalent to T"“ 2; 32.

‘z%-“...and the fraction g-is equivalent to 1%3 l%w 2%' gg eo. In

each case the denominators of the equivalent fractions are the multi-
Q]es of 9 and 6 respective1y As shown on the textbook page,

4, ./.} is the set of multiples of 6

{6, 12, 18, 24, 30, 36, 42, 48,

and

B

{9, 18, 27, 36, 45, 54, ...} T the set of multiptes of 9.

It is evident that 18, 36, and 54 are (the first three) multiples
that are common to both sets. Hence 18, 36, and 54 are called common
mu]tiples of 6 and 9. Any one of these could have been used as a
denominator in the addition-of- Fractions problem. The choice that

'S

52




.
-

USING THE LEAST COMMON MULTIPLE

A. Suppose you want to add% and ,g. Can you rename %‘ \‘s some
number of sixths? Can you rename 2 as some number of ninths?
Why must you rename both fractions?

.

= Copy and complete the following examples.
BETH SALLY

>
=
<

I
it

+
ML Ol
I
I +
QMU Dfse
i
oo Bl

|

¢

4
-~
-~

5
54
a5
34
5T -
53

[*]
=2

8 What did Beth use as a common denominator? Sally? me?
® How should their answers compare?

B.'The number that Amy chose as a common denominator, 18, is the
least common denominator. ' y

(6,12, A8, 24, 30, 36, 42,48, 54, - - -}
{9,(8727,36,45,54, - - )

® The least common denominator is the least common multiple of
the denominators. . ’

s List the multiples of 2; - of 3; 4; 5; 6; 8; 10. S

® What is the least common denominator for. 5 and §? for } and £?
for2and }? for }, &, and 3? ,

® Copy and complete the following.

11 31 _ U TR TS
773= 7 5—3= +15+t3= L
C. Do 3 and 4 have any common factors? . LEAST COMMON
Do 11 and 2? 8 and 57 - °€"°;"é~”°“
® Compare the least common denominators 43
with the denominators shown in each &3 22
pair of fractions. 3 2
How are they related? 85 40
®.Copy and complete the following. . )
1.2 1.3 = : 3.2 1.4 .
ats="? 3= =1 gts=" gt7i="

1972, Harcourt Brace Jovanovich, Inc., New York. Harbrace
athematics, Purple, p. 156. Reproduced with permission.

53
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gives the smallest denominator is 18. This is the smallest or least

common multiple of 6 and 9. : ‘

DIRECTIONS: " ‘ .
1. Find the least common multiple of each pair of numbers given
below: .
i
a) %. 39
b) 180, 225
c) 12, 40
2. Until now we have been considerifig the set of counting numbers.‘
If we look at the set.of whole ngmbers {0, 1, 2, 3, ...}, then/"‘\\\\\
{0, 6, 12, 18, ...}  is the (set of (whole number) multi-
‘ples of. 6; ‘ -
{0, 9, 18, 27, ...}  1s the set of (whole number) multi-
ples of 9. ‘ - ’
Hence a child would be completely right in saying that 0.is the v
least common multiple of 6 and 9 (with respect to the set of :
whole numbers). However, Msgdcjing fractions as on the textbook ‘

page, it is necessary to use counting-number multiples instead
of whole-numher multiples.” Why?

3. As a group, formulate a definition of the term least common mul-
tiple of a pair of counting numbers. Later, each group will pre-
sent its proposed definition, and the'class will discuss which.
definitions are acceptable. Your instructor will then ditto or
record on the blackboard the best definition(s). (By attempting -
to work out a definition of LCM instead of memorizing a printed
definition, you should obtain a better feel. for the LCM concept
and also for the considerations that go into creating good defi- =~

nitjons. The process of arriving at definitions is a very basic
)

and important aspect of mathematical thinking.)




) PART B: Greatest Common Factor (GCF)
DISCUSSION:

A knowledge of a Eystematic method for finding common faétors or
greatest common factors can be useful in multiplying or simplifying.

fractions. For example, to simplify %%. the following method could

be used: _
{1, 2, 3, 5, 6, 10, 15, 30} is the set of factors of 30.
{1, 3, 5, 9, 15, 45} is the set of factors of 45.

. ¢
The largest factor that is .common to both‘ts. the greatest common

factor of 30 and 45, is 15. Therefore, 15 is the largest number that

is a factor‘of both 30 and 45. This information can be used to sim-
plify %%. as follows:
0 2-15

RN

DIRECTIONS:

1. Find the greatest common factor of each of the pairs of numbers
given below: ’ .

a) 126, 35
b) 60, 75
c) 143, 21

Working in small groups, formulate a definition of the term.
greatest common factor. Each group's proposed definition/will

-

be discussed by the class as a whole.

3. Give an example of a mu1t1p11catioh‘prob1em involving fractions
in which finding a GCF would simplify the computation of the
product. Complete the ca]cu]at1on 6f the product with ‘the aid
of the GCF.

4. Take a pair-of numBers, find their GCF and LCM, and compute the
product GCF x LCM," Repeat the process with a few other pairs.
What do you observe? .

b5

*

l . - . N - , . . |
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" 5. Is the LCM of two numbers a multiple of the GCF of those two

it {5 to be a mulfiple of 6, it

" must have a 2 and a 3 in its prime -
‘factorization. Consequently, the

. least common multiple of 9 and 6

TN

z

numbers? Try some examples. : S ‘ .

" ing numbers. Use your definition and find the GCF of the fol-

6. Give a deffnition for the greatest common factor of three count- . ..
\
lowing triples. |

a) 30, 21, 6 : T L
b) 143, 21, 86  » . S o .
oL * ‘ '

c) 60, 210, 75 - - ., : S » !
7. Let a and b be counting numbers and define a«b to be the. B

greatest common factor of "a and b. Does this define a'binary"

operation on the set of counting numbers? (A binary operation

on a set is a function which assigns a number {rom the set to

each ordered pair of numbers from the set, ) What properties .

does the operation « have? o

8. Suppose that the least common multiple of a and b is ab.

What can you say about the common factors of a and b? ) .

R
L

-

PART C: LCM, GCF, and Prime Factorization

DISCUSSION: o ;

Sally attempted to find the least common multiple of 9 and 6 by rea-
soning as follows: c , ,

"9=3x3and 6=2x3. There- -
fore, 1f a number is to be a mul-
t1p1e of 9, 1t must have two 3's

in its prime factorization. If

must have one 2 and two 3's in its
prime factorization: the LCM of -
9 and 6 is 2 x 3 x 3 = 18."

, 56
66
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DIRECTIONS

‘ 1. Try Sally's method to find the LCM of each of -the foHow'lng

pairs of numbers
a) 12, 40
b) 54, 72
c) 9.139

works.

¥

pairs of numbers;
a) 54, 72

b) 60, 75

c) 198, 162

kY

she found the GCF of 30 ahd 45:

|
|
|

GCF of 30 and 45 must be 3 x 5 ~ 15. -

V=2x3x5
45 = 3 x 3 x5

*

2. Try to aescribe Sally's method succinctly and exp1a1n why it

Sally.found her prime factorization method so successful for finding
LCM's that she worked out a similar method for GCF's.

Here's how

The GCFgof 30 and 45 must be ar factor of both 30 and 45,
" not a factor of 45, 2 cannot be in the prime factorization of the
GCF. 3 can be; but 3 x 3 cannot be,‘since 3x314s not a factor of
30. 5 1s a factor of both 30 and 45.

Y

Since 2 is

Putting this all -together, the

@B

3. Use Sally's method to find the GCF of each of the following
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4. Try to describe Sally's method succinctly and-explain why ﬁ#
works. ‘ ’

5. Use Sally's methods for finding the’étM and GCF of a pair of
numbers to explain what you observed in exercises 4 and 5 of
Part B. - '

6. Explain how you can usé the prime factorization of a number to
find al) of its factors. Also explain how you can Use the prime
factorization of a number to find immediately how many factors
the number has. As examples to get you started, we 1ist the

following:
6 =2x 3, and 6 has four ‘factors; p ,
30 = 2 x 3 x5, and 30 has eight factors; :
210 =

2x3x5x7,and 210 has sixteen factors.

6&
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e ' . PROJECT 3. ‘

" ! A PARLOR TRICK BASED ON NUMBER> THEORY

C)

An old chestnut on the parior circuit can be described as follows:
Ask a guest to write any three-dig1t number .on- a slip of paper, and

to pass the paper to the next guest. This guest is to form a six- f"

digit number by writing the or1gina16three d1g1ts in order tw1ce
For example, if the or1g1na1 digits were 234, then the siy
. ber is 234234, The paperMis passed to the next ghest,
to divide the six-digit number by 7. You can add You‘needvnot be
concerned about the rema1nder, there will be n0ne "The paper “is
passed to the next guest, who is asked to d1v1de:the resulting quo--
tient by '11. Again you may comment that thereIWilljbe,no rémainder.

The paper is, passed to the next guest, 'who ‘is asked to divide the * -

resulting quotient.By 13; again there will be no remainder: ’FiHEIIy;
. the~ﬁaper is‘returned to the original guest, who observes that the
‘ last quotient is his original number! ‘ '




s EXAMPLE

a) Aori.g_’i'na'] number.  * ﬁ B 234 A. )
o b). siX-digit number 234238 2 c E
c) '.quotile;nt upon"di‘vi‘s’io‘h of (b) by.7 VQ33462_ :
d) quotient upon division of (c) by 11 3082
‘ . e) :;u‘t?lt\i'ent upon division of (d) by 13 . = 234 )
What is tt‘\e number-theoretic basis for the trick? . o .
~ Can”you construct a similar trick? : o |

b
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ACTIVITY 7
SEMINAR

FOCUS:

bl

-

This seminar considers the general_question of the role of,intekest-

ing numbé?-theory problems in teaching and learningvmathematits. Also, v

more speciallized questions are raised concerning the relation of num--

ber theory to other topics in the elementary curriculum and concern-
ing methods|of introducing number theory to élementary children.

DIRECTIONS:

The queStibns that follow will serve as a basis‘fOr a class discussion.

1. Why is it that so man§ prdb1ems that occur in'newspapers, maga-
zines, and collections of mathematical puzzles have a number-

theoretic base?

-

What are some'instances of number theory as numerology, f.e., :
the mystique of numbers? (You may want to do a little library

work on this one.)

Two teachers were €S1king in the fpéulty Tounge of an elementary .

school. o

THE SECTION ON NUMBER
THEORY 1S CQMING\UE NEXT
INTHE TEXTBOOK, BUT L
PLAN TO sKiPIT. MY
CHILOREN NEED THE TIME
"FOR PRACTICE ON
COMPUTATIONAL SKILLS
IN MULTIPLICATION AND
DIVISION... _:

OH, T'VE HAD GOOD LUCK
WITH NUMBER THEORY.

\ THE CHILDREN REALLY "

ENJOY IT,.AND I'M
AMALZED AT THE THINGS

| THEY DISCoVER ON THEIR

OWN. ALS0, COULON'T
. You BROADEN THE

CHILPREN'S EXPERIENCES

WITH MULTIPLICATION
AND DIVISION
BY PRESENTING

\\ APPROPRIATE TopicS IN

NUMBER THEORY ?




1 ) ' ’ |

. ‘)b )

In"1ight of this dialogue; res&ond to-the'fol1bwing questions.

a) What number-theory topics related to multiplication and divi-
.~ sion might the second teacher have in mind? Take at least
one of the topics and discuss how you might teach 1t in order
to clarify and extend the ch11dren S bas1c understand1ng of

mu1t1p11cation and division. (In particular, suggest some »
probing questions that might be used. )

- b) Give some examples of number- theory problems that provide
,gh11dren with the opportunity to discover patterns.. Suggest
some settings mater1als, and questions that might aid the )
children in the discovery process. (>>"

c) What add1t1ona1 arguments might be used to convince the first
teacher that her line of action is unjustified?




I ‘ X , Section || .
. PROBLEMS AND PROBLEM SOLVING |
D T

&y " o
. - DOne of the goals of this unit is to provide you, the reader,vwith an
opportunity to play the role of amateur mathematician. A part of
the work of a mathematician is to construct theories; another part " -
v is to solve problems. Difficult problems (and this includes some
that appear.on the surface to be quite %traightforwérd) may require
-sophisticated mathematical techniques for .their Soluthn; However,
“much less difficult problems may challenge your curiosity and inven-
tiveness and still be solvable with the use of elementary ideas and -
' techniques¢, The way in which problem solving can contribute td‘]éarn-A
ing mathematics has been: succinctly expressed by one of mathematics'
greatest problem-solvers, George Polya:

n

‘“Thus, a téacher of mathematics has a great opportunity.
If he fills his ‘allotted time with drilling his students
in routine operations, he kills their-interest, hampqrs
their intellectual development and misuses'his opportun-
ity. But if he challenges the curiosity of his students
by setting them problems proportionate to thei; knowledge,
and helps them to solve their problems with stimulating
questions, he may give them a taste for, and some means
of, independent thinking." .

A great'maﬁy problemskggst occur in fhe c]éssroom. in textbooks, or
--or that occur in everyday life, in daily.

’
\
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activities, in newspapers, magazines or puzzle books--have a number-
theoret1c flavor. This section is dévoted to the study of a few such
problems. and to mathematical problem solving in somewhat more gener-
ality. The broad theme of the section is pursued 1in greater depth

in the Exper1encas in Problem Solving unit of the Mathematics-Methods

Program. . ,
The purpose of Act1v1ty 8 15 to get you started. [t consists of
three short prob]ems "and related exerc1ses The problems are worked
out in varying degrees of -detail and in a conceptual framework that
should be useful to you in solving the problems in Activity 9 and in
other mathematical problem-solving situations as well. Activity 9
contains a selection of problems; some are quite easy and others are
fairly difficult. A completely worked out problem similar to those

of Activity 9 is contained in the Appendix: An_Example of Problem ‘

Solving.

MAJOR QUESTIONS - :

1. What are seme advantages to organizing your approach to solving
a probliem?

€

2. In what ways might problem solving reinforce the study of stand-
ard topics in the elementary mathematics curriculum? '

3. Write a paragraph describing how one standard top1c might be
presented in a problem-solving mode.

4. A common teacher reaction to a student's wrong approach té a
problem is, "Read the problem agaip." What is the teacher try-
ing to communicate to the student? What question could the
teacher ask in place of this one that might more effectjvely
achieve the objective? ' |
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ACTIVITY 8 . (' -
‘ ORGANIZING THE PROBLEM-SOLVING PROCESS

FOCUS:

This activity offers some guided experiences in solving mathematical
problems. It provides a basic organizational scheme in which much

of mathematical problem solving can be profitably viewed. (Read the
discussion of Parts A, B, and C as a homework assignment, in prepara-
tion for class., In class you will discuss the examples and do the
problems under "Directions.")

PART A
DISCUSSION:

v
From time to time in your study of mathematics, either as a regular
part of the curriculum or as an extra-credit assignment, you have
. been asked to so]ve_d?oblems.“ﬂere we will focus more directly on
‘ the problem-solving process than on the taék of getting answers to
specific problems in the most efficient manner. We proceed in-a dis-
cussion in which the main ideas are illustrated with examples. In
keeping with the'tbpic of thé unit, we have selected relatively sim-
ple number-theoretic problems for our examples. You will have an op-
portunity to try your hand at similar problems, as well as ‘some
tougher ones, later oh. '
The place to begin solving any problem is to ask:

JUST EXACTLY
WHAT [SIT THAT |
IAMTo DoO? /.
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" An attempt to state the problem in precise terms frequently suggests
1ines of attack. In ask1ng for a precise statement of the prob]em.
one often asks for a translation from a verbal form; of the problem to

¢

a mathemat1ca1 one.
‘ Next, one asks, . . o

WHAT DO I
KNOW?

. ¢

It is important ‘to decide what too]s,ALd techniques can Be used in
studying the situation. Adain, sorting through your store of mathe; .
6§t1ca1 knowledge looking for !cmeth1ng useful may suggest how to o
approach the problem.

Responding to these questiong should be v1ewed as steps tbag -one
always goes through in solving a problem. From here on, the. way'1n
which one proceeds will vary from one ‘problem to another. The ap-
proach used profitably on one problem--it might be termed a. strategy--
might be totally ineffective on another problem. We will ment1oﬁ and
{1lustrate briefly a few ways in which problems can be approached
We turn now to our first examp1e._ . ¥

«
¥

EXAMPLE 1 .

Are there any perfect squares ipn the sequence [
11, 111, 1111, 11111, .,.? : - |

If we follow the approach suggested above, then the first step is to
decide exactly what the problem asks. In this case, the answer is :
the following: Are there whole numbers n -such that n2 = 11, or

n2 = 111, or nl = 1111, ...?
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Next we take inventory of what we know. We recatl from Activity
2 that 11 is prime, and consequently there is no counting number n
such that n® = 11. Also 10% = 100 and 112 = 121. Therefore, there
s no n with nf = 111. Next, 33% = 1089 and 342 = 1156; so there
isno n with n= 1111,

So far we have considered a number of special cases of the prob-

1}

lem. Frequently the solution of special cases provides insight into .
the general situation. In this case, the analysis of some special
cases provides evidence that it is impossible to have a counting num-
ber n with n® = 111...11 for any number of 1's. We ggggg a solu-
tion: There are no-perfect squares in the sequence 11, 111, .

Let us see whether our guess can be supported or verified. We
ask again, what information can we use to, convince ourselves that our
guess {s correct? Remarkably, it {s enough to know the simple fact
that every counting number is eithér'eVen or odd. In particular, if

n 1is such that n2 = 111...11, then n is cither even or odd. We
' separate the problem into two subproblems and consider thém separate-
ly. '

First, if n 1is even, that is, if n = 2k, then

n? = (2k)2 = ak? = 2(2k?).

Thus, 1f n 1is even, then n’ is also even. But 111...11 is odd, so
n cannot be even. :

Next, suppose that n2 = 111...11 and n 1is odd; i.e.,
n=2k+ 1. Then

(2k + 1)2 = ak? + gk + 1 = 111...11,

and consequently ,

ak? + 4k = 111...10.
The last equality can be rewritten as 4(k2 + k) = 111...10. Since
4 divides every multiple of 100, it follows that if 4|111...10. then

4 must divide 10. That is,

-
! 111...1110 -* 10 = 111...1100

‘ = 100 x 111...11,
and 4 divides 100 x 111...11, so if 4 divides 111...1110, 4 must also

67 | 7'




" givide 10 (recall Activity 1). But since 4 does not divide 10, we

conclude that 4 does not divide ...10. This cowp1etes the'argur

ment that if n is odd, then n? cannot equal 111...11. -~ ”
It s helpful to review-the analysis of this problem, .and the

fo]]owing diagram summarizes the main steps.

We introduced here the use

‘ ' Precise
of special cases, guessing, and Example. f— Mathematical

sub-problems. The guessing -Problem

noted in the argument is worthy _
of special cannent.‘ It is an . What fs
example of an extremely impor- Known

tant activity known as hypothe-. Y

sis formulation. In somewhat ‘ Study of
oversimplified terms, it is Special

: Cases
simply the generation of a

guess based on the evidence.
Although the generation of a -
hypothesﬁs does not ordinarily
settle a problem (it usually
requires verification), it is
an important first step. It
sometimes happens that coming
up with the right hypothesis

/

Guess

What is
‘ Known

is much more difficult than
Ver1f1cat1on of

showing that‘the hypothesis Solution Guess;

is correct. of Problem Separation into
' : Subproblems

»
DIRECTIONS:

1. Determine whether there are any.perfect squares in the sequence

22, 222, 2222,... How about the \sequence 33, 333, 3333, ...?

After making these determinations, think back and ask yourself,

"Have | used the steps suggested above?"
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PART B

DISCUSSION:

Another approach that is frequently useful in solving'problems is to
look for patterns. Patterns may be obvious from the formulation of

the problem, or*it may require some insight to'recogniie them. Since
we are concerned with number-theoretic problems in this unit, the .
patterns we will look for are number patterns The term number pat-
tern means exactly that an arrangement of numbers in which-the num-
bers are posit1oned according to some discernib]e_rule.‘ The ‘way in
which one takes advantage of a number pattern to help solve a problem

_is best illustrated by an example. A fina] caveat is in order,

nowever: Patterns can be deceiving thingst They may lead you in v
fruttful directions, but they may also lead\you astray. The direc-

tions pursued here are fruitful ones. IZere is an example of a pat-
tern that leads to a dead end in the discussion of the conjecture on

page 116 of the Appendix.

EXAMPLE. 2

Find the remainder when 3%%° is divided by 5. Remember

that 32%° means the number 3 multiplied by itself 245
times.

Clearly, this number is so large that it is impossible to write it
out, actually perform the division, and check the rema fider . Taking
the first of gur three suggestions, let us begin by a&iing, "What are
we to do?" By the division a]gorithm (see the Multipllication and 01—"
vision unit of the Mathematics-Methods Program), there are whole
numbers q and r such that 0.5r < 5 and 3245 =58q+ r. Our
problem is to determine the nun‘er r. ' -
What is known? It may be useful to beg1n by 1ooking at some *
simpler problems. We can certainly find the numbers q and r for
small powers of 3. This is done in the table on the followind page.
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Associated Number - Quotfent g, remainder r
.- - when the associated num-
Exponent | Exponential ’ o} beris expressed as
. Form Decima}, Form |- .. 5q+r
(power of 3) o
, . q r
0 o 1 1. 0 1
1 3 3. 0 3
2 32 9 1 4
3 r '
3 3 27 5 2
4 - 3t s | 1 |
5, 3° 243, w8 | 3 '
6 38 Co729 145 g
7 i | aw | am 2
8 38 661 . | -1z | 1 '

Notice thé pattern: The remainders 1, 3, 4, and 2 occur in a
regular repetition. Let us see if we can use this pattern to answer’

our origiral question;.i. e. , what remainder corresponds to the expo- .
nent 2457 We observe that in every case illustrated in the table, . , v
an exponent wpich is a multiple of -4 corresponds to a rema1ndeFK6? l: b
Exponent, //« r.
0 —= 1 ,
4 —*———-——-- 1 ' ) A T w.
. 8——-»1 J ' -

We quess that this contindes to be true for higher exponents. If N

this 1s so, then the exponent 244(= Gllx 4) corresponds to remainder
1. Thus the next exponent, 245, ought to correspond to remainder .3.
Th4g fs in fact the case. This assertion can be justified, but just1-
© ficationqis not essential to make~our point, namely, that a carefyl
st?&y of patterns is often helpful in problem solving.
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In additidn to the use of patterns; the mafn pointiof the ex-
ample, we utilized guessing to formulate a hypothesis. Also, in the

. creation of the table from which we dedbced a pattern we studied a ,

number of simpler Q[pblems. As with.special.cases.the study of sim-
pler problems may aid prob]em solving by providing more information

about the situation and poss1b]y jdeas which may work in the original
problem.

DIRECTIONS:

89

1. Determine the remainder when 2°7 is divided by 3. -

197 |

2. Determine the remainder when 3 1s divided by 7

3. Drawja diagram for the problem- solving protess used in Examp]e 2.
STmilar to that drawn for Example 1 on page 68. K

PART ¢
DISCUSSLION: '

Parts A and B contained problems that yéu could understand at once.’
They involved only mathematical 1deas’wﬁth which you were already

. familiar. In the next example we will &onsider another way, and per-

haps a more typical one, in which problems arise. We begin not with
a specific problem but rather with a siiuation to be studied. In the
course of our study we will formu]ate and solve some specific prob-
lems.

In add1t10n to giving an instance 1n“wh1ch problems arise in the
course of a discussion, this example wi]] illustrate the way in which
appropriate mathematical notation can simp]ify expressions and there-
by facilitate problem solving. One can!view mathematical notation
as a concise language and a systematic means of keeping track of in-
formation. We all appreciate how basician understanding of the lan-
guage is to communication. l

The content selected for this example is "figurate" or "polygon-
al” numbers. It exemp]ifies the sort of material that can be presént-
ed at one level in the elementary schoo} (middle grades) and that
nffers worthwhile food for thought for more advanced students.

¢
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_ - EXAMPLE 3 1
One can view the squares of the. counti:gd‘,@nbers. i.e., 1,4, 9;f16. |
. 25, ..., as those numbers that give th number of dots-in a square . l
- array. It will be very convenient to have a notation that associates . '
with each counting number n the nth square number. We accomplish ‘
this by letting S (read "Ess sub n") denote the nth e n
-ber. The diagram be]ow illustrates’ Sl “through Sg-

v

square num-

v

v ) T e e e @ o e o o o
[ ] [ J [ ] [ [ J [ J .’ : [ J [ ] [ [ ]
[ ] [ [ ] [ J [ J [ ] [ .‘ [ J [ [ ] [ [ J [ J o
o o o o o o o, 0 o o ° .Doro.‘o"’
Sy =l. S,=4  S;=9  5y=6 Sg = 25
Nhat is S%? 5,7 Draw a diagram for each. ‘ ) ;

The square arrays can be partitioned to suggest interesting num-
ber-thedretic relations. One possib]e partitioning is ii]ustrated

below.

25=1+3454+7+9

rd




If this information is collected in a table’, we have:
cred 1n @ wale, we faver

! i -

N A : ' PP
Number of |~ e
Subarrays | - - Number of

« Resulting” | ¢ Terms in Sum
from Par- | 1+ 3+ 5+ ...

C o - tition

n . «

Number
“of Ddts
on a
~Side

Numbef'
of Dots
in Array

S

-4
9
16.

25

.\-A
S

If one examines this tab1e carefu]]y and looks for patterns, one*

‘notes that in each line the entry under [] is one 1less ;han twice

n. ;That“is, [ =2n- 1. Since [] is defined asvthéeﬁést term in’
~ the sum, we conclude that ‘ ; .t - '

I 2 ’ ’.

. Sn = n2A= 1 +/{ $ 54 ... + (2n - 1).

t;g

N

Thus, a study of square anyers has led_to an answer to the problem:

Find the sum of the first. n .odd numbe?s.

/ . &

~This question was not p;}%d initially; but 1nstead arose qu1te natur—

a11y in our discussion, ¢f square numbers..

N
'

/ .
DIRECTIONS: ’

t

1. Evaluate the sums ., 1+ 3 +5+7 +9

143+ 5T+ L+ 19
, 1+3+5+7+ .., +799

2. Use the results of this example to evaluate .,
24 4+ 6- + cea 2220
. o .

.




N A . / PART D
/ : . _
DISCUSSION:

In Example-3 of Part C, we considered square numbers. There are

other 1nterest1ng "polygonal" numbers, and in this part we continue -

the d#scuss10n a bit further - Adopting a notation s1m11ar to-thdt

- above, we Tet Tq be the'number of dots in a (regular) tr1an%:1ar

array with n dots on each "leg." We refer to Tn as the n”.
triangular number. The triangular numbers T1 through _TS are

- illustrated. . - K : o

D,

EXAMPLE 4
- ..
[ ] .. [ ]
° e o ‘ e o o
) e o e o o e o o o
.I k.\ [ ] [ ] [ ] [ ] [ ] ® .’ [ ] [ ] [ ] [ ] [ ] [ ]
Ii =1 T2 =3 T3 = 6 T = 10 T5 = 15

You should determine T and T7 ahd illustrate them.

Since the number of dots in the top row ofeach triangle is 1.
the number in the next row is 2, the number in the third row is 3,
and so on, we have -

T1.= 1
T,=1+2
T3 =1+2+ 3.
and in geﬁeral -, ' _
T'=1+2+3+...+n.

n . ‘\ .
Given n, the number of dots in the nth triangular array, that is.
T , fan be computed in a varjety of ways. We will describe one’ of

' them and leave anotherhior you to do [see (2) below]. ' ‘ -

Y
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.

“Fiprst, wé use sthe above resulfs on square ndmbers _ We_begin by

observing that the third triangular array 15 related to the third
\

. square array as shown below -
’ o0 . ° o
[ ] [ N [ ]
(] [ ] [ N ]

That is, the number of dots in the above array is twice the number in
the third triangular array. But the number of dotswin this array is’

also equal to the number of dots in the third'squafe array plus 3.

-The 3 arises from the fact that the above figure has”two dots in each

diagonal spot instead of one as in the square array. Using a diagram,

we could express this as T e .
e e o 'Y e o ‘o? °
[ ] e O . @ _— [ ] [ ] [ ] _+_ [ ]
'v
) o e @ ) o ) o [ ]
.Y
or, in symbols, as ‘ .
| ‘ -2T3 =.§3 + 3.
The corresponding figure for the fourth array is, ) .
o e ) e e e e o ° .o
[ ] H.. [ ] . @ [ ] [ ] [ ] [ ] [ ]
[ ] [ ] e o [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ I s @ [ ] [ ] [ ] [ ]
“ * - ’ “.
or 2T4 T Sy | + 4
If the pattern holds true in general, then 2T =S +n. But
_ .2 ' . 2 - 1
S, =N 50 we have 2T = n® + n n(n +1) or Tn ﬁn(n +1). . {
L] R )
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We have solved the problem: o
Find the sum of the first n counting numbers.
. e

_DIRECTIONS:

1. Use the information deduced above about triangilar numbers to
help in evaluating the sums: : _ e
" 1+2+3+...+9 7

14243+ ... +19

I+2+3+....+99.

2. Consider the follqwing table

n 1 2 3 4 - -5 6
T 1- 3 6 10 15 21
8T, 8 24 48 80 1200 168

Find another reTationship between Tn and Sn‘ What does it
mean geometrically? (Hint: Consider 2n + 1.) o

3. One can define hourglass numbers aé in\the following figures.
3 .

@ [ ] [ ] [ ] [ J
‘ ' ° ° ;
[ J [ ] [ ] . [ J [ ]
[ ] [ [ ]
[ J [ J [ ] [ J [ J
[ J [ J [ ] @ [ J [ ]
; . @ [ ] [ 2 [ J [ J [ J [ J [ J [ J
Hy = 1 Hy=5 H3f= 1T Hy = 19

’
A ] .

Find an expression for the nth, hourglass number; Hn. .How is
Hn related to Tn? '

'

3
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4. 1dentify the uses of patterns in the discussion of square num-

- bers and triangular numbers.




ACTIVITY 9
PROBLEMS

FOCUS:

In this activity, you will have an opportunity fo try to utilize the
organizational scheme presented in the preceding activity to solve .
some problems on your own.

DISCUSSION: _ ' ‘

The problems presentéd in this activity are not tied directly to
specific subject matter, ‘and their solutions are not to be found ex-
plicitly anywhere in the unit. However, the topics you have studied
in the unit will be helpful in directing your thinking along produc-
tive lines. It is to be emphasized that you will be operating as an
amateur mathematician and it is for you to decide which mathematica)
tools are to be used in each instance. It may well be that your
approach to a problem will differ from the approach chosen by another, ‘
member of the class. You may find it useful to review Actf@itf 8

as you proceed. .

"

DIRECTIONS : , ‘

A selected set of these problems will be assigned by your' instructor.
Work on them at home or during free moments in the scheduled class. .
Your assignment should be finished by the.time the unit is completed.
The problems of Part B are intended to be more challenging than those
of Part A. , o
./‘*-/
PART A ‘ .
1. Is a number plus its square alwéys even? <. |
2. Is n(n+ 1)(n+2) divisible by 22 By 3?7 By 6?

3. Can the square of each odd number be written in the form
8n + 1 for some whole number m?

’
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4. Ignoring the initial primes 2 and 3, is the product of each

. pair of twin primes divisible by 12?

5. *{Jnd}the sum of the squares of the first n 6dd numbers.
,-

PART B
1. There is a row of 1,000 lockers, some open and some closed. A
boy runs down the row and opens every locker. A second boy runs -
down the row and beginning with the second locker he shuts every
other locker. A third boy runs down the row and beginning with
the third locker he changes'the state of every third locker.
That is, he opens those that ‘are closed and closes those that
are open. A fourth boy runs down the row and beginning with '
locker number 4 he changes the state of every fourth locker.
The process continues until 1,000 boys have run down the row.
Is the 1,000th locker open or closed? the 764th? [Hint: Do
not work out the entire process by hand. Consider the results
after the first few boys (six or so) have run down the row, and
then look for a pattern.] '

2. The Pythagorean theokem says that if z 1{s the hypoteneuse of

a right triangle with legs x and y, then x2 + y2 = 22.

Triples of whole ni;bers' m, n, p such that me + n? = p?

»

\




are known as Pythagorean triples. Ceftain.Pythagorean triples

N

have the property that p = n + 1. For example ‘

3, 4,5 (3% +42=5%) and 5, 12, 13 (52 + 122 = 139),

Find five more such special Pythagorean triples.

A group of children decide
to "play store," and they
have items for sale at 1¢,
2¢, 3¢, ..., i.e., at all
prices. Their money, how-
ever, consists of only two

coins, a gleep worth 7¢ and

a glop worth 23¢. A custom-
er can purchase ap item
worth 5¢ (for example) by

giving 4 gleeps and receiv-
ing 1 glop-in change. What
are the prices 1in cents of al]l of the items that can be purchased
with gleeps and glops? What if a gleep were worth 6¢ and a glop
21¢7

Each letter stands for one of the digits 0, 1, 2, ..., 9. Find

values of the letters that make the following true:

a) . .HOCUS .
+ POCUS

PRESTO

» L

b) FORTY + TEN 4+ TEN. = SIXTY [Solve independently of (a).]

Thrée pirates have a chest full of gold pieces, which are to.be “
‘divided between them. Before the division takes place, one of

the piratés secretly counts the number of pieces and finds that

if he’ forms three'equal piles, then one piece is left over. Not

being a generous man he adds the extra coin to one pile, takes

the pile and leaves. Later the second pirate goes to the chest,




dividés the gold into three piles, and~ag$1n finds a piece left
over. He adds the extra piece to one pile, takes it, and leaves
quietly. The thirgd pirate does likewise. Sti1l later when the
pirates meet to divide the treasure they find that the number of
coins remaining is evenly divisible into three piles. How many ©
coins were originally in the chest?
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PROJECT 4 N | .
PASCAL'S TRIANGLE -

* PRascal's triang]e is a triangular array of numbers that arises in . 1
severa] different ways in mathematics. Although it is named after
the French mathematician Blaise Pascal (1623-1662), the table was
known to the Moslem philosopher and mathematician Omar Khayyam over
five centuries earlier, and there are references to still earlier
occurrences. The table can be extended indefiﬁitely, and the first
ten rows are reproduced below. ) , . ’

. B

1 5
1 615 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 5 70 56. 28 8 1
, 1 9 36 84 12612684 36 9 1.

This triangular array contains a great many numbe( patterns. . A;
examples, we point out that the ‘éntries on the borders ‘of the‘tr1angle
are all 1's (remember that you 'should 4maginé the triangle continuing
indefinitely downward) and each entry not on a border is the sum -of
the two entries in the Jine just above it to its right and left:

Y1

. 1 1+42=3
. ,
1 3 1




~

Also, each entry is the sum of the entries on a diagonal segment.

‘ For example:

1+1+1+1=4 )
1+2+3+4=10

As a final example, note the pattern formed by the 'sum of the entries

in each row:
N SR C=1=20
11 W =222
1 2.1 14241 = 4= 2
1 3 3 1 1+3+3+1 =8 =7
1 4 6 4 1 1+4+6+4+1  =7=7

_ To check you’r understanding of these three patterns, it is subr - ™
gested that you give three more examples of each of them.
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“Much of the intérest in Pascal's triangle is due to its‘gﬂqui-
tousness. We jllustrate jts occurrence in an unexpected setting with
the following question: ) :

- Given the set {A, B, C, D}, how many different subsets con="

taining one element are there?
How many different subsets containing two elements?
Ia

‘How many different subsets containing three elements?

V4
¥ Can you connect this pattern of numbers with‘Pdscal's triangle?
How? '

‘. ¢ b
=

Be wise, Generalize!

#
[ o «
fﬁ ~ How many different subsets containing fpur elements? "

R
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Sectjon In

APPLICATIONS CONNECTIONS
AND GENERALIZATIONS

i
: |
This section contains a collection oﬂ actIvItIes whose common Ingre-
vdient {is that they use ‘the number theory deveIoped in Section I.
There are addItIpnaIIexampIes, an indication of some of the connec-
"tions between ideas, and some mathematical generalizations. Although
the topics discussed here do, have Imprjcations for elementary school -
mathematics, e.g., clock arithmetic, weglo not concentrate on these
aspects of the subject. Instead, we §e2§§to‘prov1de a natural mathe- ‘
‘ matical setting in which several of tI\e topics discussed earlier ap-
pear as special cases of m re genera1|situations - The reader who
finds his appetite whetted by thIs br’ef glimpse Into a vast and Im-
portant area of mathematIcs is encouraged to pursue-his interest.
The references in the bibliography that are identified as oriented
toward content ar extensions® of the mathematics would be an appropri-

ate starting point.
'

MAJOR QUESTIONS

I
i
I
I
, T
1. IdentIfy and discuss a reaI—worIdlsItuatIon different from those
of Activity 10, in which the concept of a remainder class arises
in a natural way. I -
2. In what ways is the identification of a symbol with a remainder
" class described in Activity 11 similar to the identification of

_the numeraa 3 with sets of 3.b10c#5, 3 balls, 3 pictures, etc.?

o
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- 3. Do yeu agreeswith*the-statement "Cong‘r‘uence is a generalization -

of ordinary equath"? why? -

4. Identify two instances outside of number theory 1n which fhe
partitioning feature of an equivalence relation is useful.

T
L3 \ "(‘
.
TEACHER TEASER - L
K \ - )
Billy was practicing add{_tion by
é E%ALENDAR | adding the numbers along each-full .
213 week on the calendar. After a o

! , y
7o g claligl _while Billy saw the following pat- | .

3
4 17 . - ’
A 2laolz (22|23 |28 ]2 “Yern-for f.1nd1n‘g the .sum'of the

p 3 numbers ‘}n a week: Take the. first
day. Add 3. Multiply by 7.". Try
1t. Wy does it work?

2|27] 28129 | 30

&




ACTIVITY 10

‘ REMAINDER CLASSES

’

FOCUS:

' One of the ways of viewing prime ahd composite numbers 1ntroduced in
Activity 2 is c0ns1dered further in this activity. The concept of a
remainder class is introduced and real-world occurrences of remainder

~ 1

s

'3 classes are discussed.
otnzcno:y‘/ ' : o S

Review the def1n1t1ons of prime and composite numbers and Part A of

Activity 2. Do the following and be prepared to part1c1pate ina’

class discussion of number (4). ~ . o R )

1. Certain rectangular and near-rectangular arrays can be formed
from tiles arranged in horizOntal rows of 2:

’ v *
* ° (N
‘

What are the similar arrays that can be formed from t11es ar- ,
ranged in horizontal rows of 37 Of 4? of 5?7 | -

2. The #rangements of (1) can be viewed from the standpoint of the
division algorithm. (You reca11vthat the dixjsion algdrithm'

. says that for-whole numbers a and b # 0, there exist whofe’

numbers g. and nr so that a =bq + r and 0Sr<b.)

a) Describe the connection between these arrangements and the :
division algorithm.. (You may choose to do parts (B) and (c)
before answering this part.) S - '

-7




b) What are the possible rema1nders when any whole number is
divided by 2? By 37 By 47" By 5? Relate your iPSWﬁFS to.
rectangu]ar and near- rectangu]ar arrays

1

L2

a c) What. are the possible rema1nders when any who]e number is
s .. divided by n? e . e

3. Let.us now th1nk of se]ecting some whole number, say 3, and.
c1assify1ng or part1t1on1ng the set—of whole anutmbers #hto d1s-" .
joint subsets according to “the remainder after ivision by 3.

For example, we have - , . B

° \/C v ~— ' — i
RN . ‘. . _ » .

p Number © f 01 2 3 4 5 6 7 8-9 10 11
Remainder : T '
after divi- o 1 2 ¢ 1 2 o0 1 2 o0 1 2 ,
sion by 3 # o ,
’ ‘ ‘. — - v : T :
. - - Thus we assign 1, 4, 7, 10, ... to the same set, or remainder _ v

. c1ass, since they have the same remaindgr‘after division by. 3

)

We can proceed similar]y with remainders 0 and 2. /

. Remainder Remainder Class
0o - {o 1,6, 9, ...] K
"1 {1, 10, ...} | o
2 _ {2 5, 8 11, ...} T !
_ Notice that the ‘remainder classes are disjoint (1 e., no, number T ¥

be10ngs to more than one remainder class), and that'they exhaust
the whole numbers (i.e., every whole number belongs to some re-
mainder class). The importance of this.comment is that parti-

tioning the whole numbers into remainder classés is in fact an

honest partitioning (see (d) below). : v P

a) How many remainder classes are associated withﬂdivisioh by 3?

3

b) How many remainder classes are associated with divisfon by 2?
What are they? List them in the same way the rema1nder clas-

ses for 3 are 11sted above. . -




c) How many remainder classes are associated with division by 5?
What are. they? List them as above.

d).-Why is it that we can be sure .that every whole number belongs N
to some.remainder class and no who]ilnumber belongs to more
. than one remainder class? ' ‘

Discuss how the use of a 12 hour clock can be viewed as a use
of remainder’ classes Ty

H

«
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_ PROJECT 5
THE SUM OF THE FIRST N COUNTING NUMBERS

N

2
L

~

The problem of determining the sum 1 + 2 +. 3 + ... + p admits of 4
variety of solutions. Qe shall»intérpret the problem as asking for

a formula involving n that gives the sum 1+ 2 + 3+ ... + n for
each choice of n, and we shall develop a means of guessing a formu-
la that works. We shall not prove that our guess does in fact always
work; but if one is to have absolute faith in one's results, such a
proof should be given. This problem 35 approached differently in
Activity 8. ‘ '

We beéin by studying the sum of an éven number of counting num-
bers. For example 1+2+ 3+ 4 +5+6+7+8." Observe that by
pairing the first and last, the second and second from 1a§t. and so
on, one has a set of pairs each of whifh has the same sum.

1, + 2 + 3 + 4+ 5 + 6 + 7.+ 8

L

sum 9

. _ sum 9

sum 9

sum 9

)

In each case the sum is 9 = 8 + 1. There are 4 = % such sums so by
multiplication 1+ 2+ ... + 8= 9:4 = (8 +1):3 .
Construct a diagram aimilar to the one above and find the sums:

;

1+2+ ...+ 14
1+2+ ... +20

Observe that/in each case, for an Appropriafe choice of n. (i.e.,
=14 and n = 20), the following equality holds.

'

(*) 1+2+...+n=(’n+1)%.
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Check this formula for n = 2, 4, 6, 8, using Pascal's triangle
“(Project 4) or a straightforward computation. | .

We now have a conjecture for a formula that works when n is
even. What.if n is odd? If n is odd, then n - 1 is even, and
we ‘can use ‘the formula for the sum of an even number of ‘umbers.
Replacing n in the formula (*) by n - 1 (which is legal since
n-1 is'even);‘We obtain ' :

"

' : y _ ‘
I+ 2% o+ (0= 1) = [(n - 1) + 1705 )

- 1),
pin=1)

and therefore a

1424+ ... +(n-1) +n

+

3
1]

=

(n-1)
2

. = n(IL€%J_+ 1)

=n((n-1}+2)
? .
) n+1
L e 2
That is, the same formula holds for odd numbers n. .
" Check this formula for n = 3, 5, 7, 9, using Pascal's triangle

4

or a Straightforward‘computation. N oo
Try to deduce the formula for odd n- using the grouping idea
exemplified in the diagram. e - .
. e A
" 4+ 2 4,3 + 4 + 5 + 6 +°7 + 8 + 9
. . 1o
2
sum 10
"~ sum 10 . ’
sum 10
sum 10

-




ACTIVITY 11
MODULAR ARITHMETIC T,

B

FOCUS:

In this activity, definitions are made, notation is adopted, and the
set of remainder classes associated with a counting number is given

a mathematical structure. Selected properties of the resulting mathe-
“matical system are investigated.

-

DISCUSSION T .

Consider again the remainder, classes associated #ith division by 3.

Rema i nder Remainder Class !
0o - {0, 3, 6, 9, ...}
1 {1, 4,7, 10, ...}
2 {2, 5, 8, 11, ...} . |

We propose an abstract setting in which these remainder classes are

viewed as. entities in their own right Each remainder class is to

be thought of as a sort of number: Thus we introduce the symbol [0]

to dendte the remainder class consisting of those whole numbers

which have a remainder O when divided by 3. Likewise we introduce

symbols [1] and [2]. We can write, suggestively: [0] = {0, 3, 6, 9,
b )= {1, 4,7,00, ...}, [2) = {2, 5, 8, 11, ...}. To be pre-

cise we should write [0]3. [1]3. and [2]3. or some similar notation,

to indicate that these are the remainder classes for divislgﬂ,by 3.

We will not do so unless we wish to distinguish the remainder classes

associated with division by different counting numbers.

Comment: This mightvbe a good po{nt to give some thought to Major
Question 2. It is possible to introduce an arithmetic structure into
‘this new system, and we proceed to give a definition of addition and
. multiplication. We begin with addition, and we first consider an

[}
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’ examﬁ\e” ‘The syﬁ%ols [0], [1], and [2] denote the remainder classes
. associated with division by 3. , =~ .
L 4

. ’ To add [1] and [2] we take any elbment of the pssociated rematna

der class‘for each; for instance, we might select 7 for [1] and 2 for
'[2], and perform ordindry addition on these numbers.

‘

© [0]1={0.3,609, ...}
[1]
[2]

1
{1, 4, 7,10, ...} 1 +i2=9

{2, 5, 8, 11, ...}
[

The resuTt is 9, and we define the sum of [1] and [2] to be the
. ‘remainder class to which 9 belongs. Since 9 beldngs to [0], we de-
fine the sum of [1] and [2] to be [0].

‘ would be convenient to have a symbo] to denote addition of
rem classes as + denotes addition of ordinary numbers To
keep the notation to a minimum, we will continue.to use '+ even
though we aagnnot adding ordinary numbers. The-multiple use of +
is common in mathematics and one has to interpret 'the meaning of the

‘ symbol from the context. Thus, if we write 1 + 2-we ‘mean ordinary o
addition; and if we write [1] + [2] then we mean addition of remain- A
der classes. With this convehtion,regarding'the use of Ehe symbol—

- +, we can write [1] + [2] = [0]. f

Continuing as above, one can-construct an addition table for' the

remainder classes assoctated with division.by 3.

&

vl m a2
(o) | (0] [1] [2]
(11| 111 (21 ol
[(2) | [21 ([0l [1] "

‘We 1e§Ve it for the reader to check that the sum of [1] and [2]
is wel] defined in the sense’ that this sum 1s independent of the par-
ticular representatives selected (7 for [1] and 2 for [Z] above).

Such a check might consist of trying several different examples. It

+ 9
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is true in general that the sums are independent of the representa-
tives selected, ~ '

vAn,app:opriate definition of multiplication can be given along
" similar Vines. Thus, to define the product of [Q] and [2] we select
“any pair of representatives, one from each remainder class, multiply
them together and note the remaihder class of the product. For in-
stance, we might 'select 9 from [0] and 8 from [2], which leads to .
9 x 8 =72. Since 72 is contained in-[0] we define the product of
(0] and [2] to be [0). Extending the use of the’symbol x as we.did
“for + ‘above, we will write [0] x [2] = [0]. The multiplication
-table for the remainder classes associated with division by 3 is
given below. - ‘

x [t o2

(0] { [o] [o0] [0O]

(1| fo] [ [2) .
, [2] [ [0} [20 [11

-

"

© “DIRECTIONS: |
. 1. Complete°the followtng addftion and multiplication tables.

v | T, 2, Bl S
03, |
[, t o -
(21, | - |
* [3:]4 e ’ . a




S 1 PO S N £ P <

[41g

X (0lg [ (2] (3

[41¢

575

(4]

(51

2.° Thg abstract systems constructed in this activity have some, but
not all, of the properties of the system of ordinary whole num--

bers.

In this exercise we shall briefly‘explore this comparison.

a) Is there a number in the system [0]4, [1]4. [2]4. [3]4 that

behaves as does 0 under addition in the ordinary whole num-

bers?

. b) Is there a number in the system of part (a) that behaves as
does 1 under multiplication in-the ordinary whole numbers?

* -

<




c) In the ordinary whole numbers, if a product of two numbers is

zero, then at least one of the numbers must be zero. Is this
assertion true in the system of part (a)?

d) Answer each of the above questions for the system (0], [,
(21, (335, (4.

It is 1mportant that addition of remainder classes is well de-

fined in the sense that the sum is independent of thg particular

representatives selected. For example, in the discussion “of

adding [1]3 and [2]3 given above, we selected 7 for [1]3 and. 2

for [2] We would have obtained the same result had we select-

ed 4 for (1] and 8 for [2]5. . k

a) Select two different sets of representatives for each of the

pdirs of remainder classes in the following sums and check
that the sums are well defined. i

\

(0] + (2], (1], + [3]4 [2]5 + [4]5 !

b) Proceed as in (a) to check that the follow1ng products are
well defined. }
(115 x (21, o [2]4 X [0]4 [1]5 X [4]‘5 ' R

o -
1 . %’\_J .

_ TEACHER TEASER

The product of a number mul-
tiplied by itself is called
a square number. Billy says
~ that 3688 is a square number.
Sally says it can“t be be-
cause its one's digit is an
8. Is either person right?

» 4




2 PROJECT 6

‘ ® CASTING OUT NINES S

~ . ' o , o
* Although you may think of modular arithmetic as a "modern" subject,
in fact it forms the basis for a method of (partially) checking arith-

metic computations that goes back at least to the sixteenth century.
" This method is known as "casting out nines" and is sometimes included
in elementary textbooks. '
The casting-out-nihes fechn1que rests on the fact that a count-
ing number is congruent-mod 9 to the sum of its digits. This asser-

tion, which is not justified here, can be proved using an argument
similar tb the one you used in Activity 4 to show that a counting
number {s divisible by 9 if.and only'if the sum of its digits 5 di-
visible by 9. T

We illustrate the technique with examp]es : - .

‘ . 33- 3+47+3:24nod9) . -
) + 486 4+8+6=0mod9 44+40=4mod?9

859 B8+5+9=24mod?9 g

nt

Since the remainder class of 373 mod 9 (i.e., 4) plus the remainder
. class of 486 mod 9 (i.e., 0) is equal to the remainder class of 859
mod 9 (i.e., 4), the test shows that the addition could be correct.’
(See the note at the end of the discussion.)

. 187 1+8+7=7mod9 ‘
- x 53 . 5+3s‘amod9} 8x7=256=2mod?9
' 561 ' ‘
935 : ,
- 9911 9+ 9 + 1/; 15 2mod 9

The product of the remainder classes of the factors: is equal to the
remainder class of the product, and consequently the computation is
not shown to be false.

97
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On the other hand, the erroneous additigp

32 3+235md9) - . .
87 8+7=6md9) 5+6+3=5mdI .
+21 24135 3mod?9

142 1+4+2%7mod9 N

is shown to be false by the observgiion that the sum of the remainder
classes (mod 9) of the adJ;;ds is not equal to theyremain&ér class of
the (purported) sum. ) . : ’
~ Notice that the test is a negative test; i.e., the test can be
used to prove that a computation is false. However, it can never be
used to prove that a computation is correct. 1f casting out nines i
Jeads to consistent results, then we have more confidence in our cal-
culations, but we are not certain that they are true. If casting out
nines 1dads to inconsistent results, then we know that the computa-

)

Note: FEach gf these tests uses the mathematical fact that!.

tion is false. .

B . » N__
if azsbmod9 and ¢&dmod 9, then -~
a+csb+dmod?9 ’ 3
and a-c 5 b-d mod 9 ‘ , .

1. Check the following computaéions using casting out nines: ™

481 + 653 + 98 + 124 = 1356
29 + 36 +, 86 = 157 .
37 x 255 = 9535 ¢ .J
17 x 8= 697
58 x 74 = 4382 o ,

~

| "Is each of the answers correct? .

2. Make an example of an addition where the answer is incorrect and |
‘ yet casting out nines does not detect the error.

ne

CHALLENGE PROBLEM

_ , 3 ‘
Activities 10 amd 11 provide the mathematical background necessary to
justify the assertion of the Note. Do so.
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. ACTIVITY 12

“MODULAR ARITHMETiC 11: CONGRUENCES EQUIVALENCE RELATIONS AND
T ‘ APPLICATIONS

S

' ~
FOCUS: .

In this activity, the concepts presented in Activities 10 and 11 are _.;'

considered further -and the not}on of congruence is introduced. 'The‘ e

1mportant 1dea of an equ1va1ence relation is- d1scussed, and congru-

. ence is shown to be an equ1va1ence‘re1at10n 0n the whole numbers
' Th1s act1v1ty cons1sts of three parts _ .

AR A: Notation o o
PART B: - Congruence as an Equivalence Relation -
PART C: Applications - '

-

PART A Notation

’

DISCUSSION: . ‘

Ll

The notions of remainder class and modular arithmetic that were intro-
_duced in the preceding activities in this sectiOn are interésting
mathemat1ca1 ideas’ in their own right.  However, they also prov1de an
appropr1ate setting in which to view a number of facts and prob]ems
Here we will introduce some notatton -and define c congruence, discuss
congruence from thenstandpoint:of equivalence relations, and give
spme applications of the ideas of this section. We start with nota-
t1on, ’

In Activity 11 the symbolf [0]3, [1]3,‘ and [2]3 were introduced
. to denote ‘the rema1nder classes associated with division by 3. Let
" us now consider "how one'could determine whether two numbers are mem-
bers of the‘Sane remainder class. ' The result is the following:

Two whole numbers a and b belong to the same remainder
c1a§sr1f and on]y if 3 d1v1des (b - a).

N -~

. Observe that there.are two~ parts to this assert1on First, if a
and b belong to the same rema1nper class, then 3| (b - a); and,

4
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second z1ft 3| b - a) then a and b belong to the same rema1nder .'
. classz Th1s resu]t can be ver1f1ed by us1ng the fact fFQm the d1v1-_'
sion»alg r1thm that .each whole number can be represented as 39 +'ry
Wherefyﬁy 0,1, or 2. ’ 7 : a B
Us1ng\th1s result we‘conclude.that‘4uand_28 be]ong to the same .
remainﬂer ass. -Indeed, 28 ; 4 = 24, and 3 divides 24. Since 4"
L " belongs tOC\fl]3 it fo1Tows that 28 does also. LikeW%se; 2 and 14
qv v be]ong to [2]3, and: 3 and 15 belong to>[0jﬁ o R ;

-

e - COEFINITION P ﬁ%{
" Let p be a counting number. Two whé]e numbers a” and .
b are said to be congruent modu]o p if p divides ~ 
b - a, |that is, if a and b are in tbe same rema1nder

class associated with d1v1s1on by p. If a 1is congru-

ent to b modu]o p, wewrite a b(mod p).
‘ \ EXAMPLES
> = B(n%d 5), 8 = 14(mod 3) 8 = 14(mod 6)

" DIRECTIONS:

1. LletS={3, 4,5,6,7,8,09, 10, 11, 12, 13, 14}. Determine
which elements of S are congruent to 0 modulo 2. Tol modulow3?“
To 0 modulo 5? To 1 modulo 4? To 2 modulo 6? v

2. The last two congruences in the examp]e; immediately preceding
the directions illustrate the”following fact: If p and q are
counting numbers and p divides q, then a = b(mod q) im-
plies that a = b(mod p). Give three more examples of this fact.

*3. Give as precise an argument as you can to justify the fact

asserted in exercise 2. L
8

4. If a=b(mod p) and b =.c(mod p), then a= c(mod p). This
' assertion can be justified in detail using some results of
Activity 1. Discuss why it should be true and provide a precise

argument if you can.

LY




5. Does there ekist a whole number x such that 2x = 3(}bd 6)?
Justify your answer.

6. If n is.a counting number, determine if 3n - 1 can ever be
the square of a counting number. H1nt Use congruences

"7. Is there a counting number n such that 11 divides 4(n2 +1)?

n

8. D1scuss the ,24~hour day and the 12-hour clock from the stand-
point of congruence modulo 12. S

) .
PART B: Congruence as an Equivalence Relation

DISCUSSION:

If we consider the statement & = -17(mod 65, it is clear that'the im-
. p11cat1on is that 5 is somehow related to 17 The precise statement
is, of course, that 6 divides 17 - 5 or that 17 equals 5 plus some .
emu1t1gle of 6. ,In this very intuitive sense we will refer to con-
gruence quulo p asva relation. The concept can be made much more
. . precise. y ' ' o - ‘
’ Since 0 is- contained in the remainder class [0]p for every
counting number p, it fo]lows that a = a{mod p) for every whole -
number a. Likewise, if a = b(mod p), then b = a(mod p). The
first of these is known as the reflexive property of the relation =
and the second is known as the symmetric property of that relation.
The transitive property is dgkcr1bed in the assertion of exercise 4
above. A relation that 1s ref]ex1ve, symmetric, and transitive is
called an equivalence relat1on - ,Thus, congruence is an example. gf
an equivalence relation. K .

The relation concept is a very general one and congruence:is
only one example. A somewhat more general framework in which to view ~
congruence is the following: We have a set U and a correspondence
R wnicn’relates each element of U with other elements of U.
Suppé?e that the correspondence: R is such that for every pair u
and v of elements of .U, either u is relaced to v by R or it

is not. In the example of congruence modulo p, the set U is the

Pty v L
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. set of whole numbers, and the re1at1on is that of conpruence, for , '

. every pair v and *v of whole numbers. either u % v(mod p) or. '

. .

u g vimod p). (Re]a?twns are discussed in more detail.in Sect1on III ‘
of the raghs un1t of the Mathemat1cs;;Methods Program )

»

DIRECTIONS: ' .
¥ -

Consider each of the following relations rand d termine how 1t f1ts .

into the framework described above. Identify those that are equiva-<

lence re1atjons. i.e., are ref]exwe. ‘synﬂletmc. and transitive.
» ! : - .

1. Ordinary equality on the s'e"t)-‘of whole numbers. ; SR l

The relation "less than” Sﬁb'jinegnoh the set of counting numbers.

N

related to b if a d1v1‘<§s b).

-3,

4. The relation "is the brother of" defined on a set of chﬁdren.~

1 X )
5. The relation }'is the son of" defined on the audience at a con-

cert. : - .

»

3. The relation "divides" on the set of coun'ﬁng numbers (a is .
|
|
|

6. The relation ~ defined on ordered‘pairssof counting ~numb'ers ' ‘
- where the re1at1on ~ 1s\%fmed by (a, b) v (c,d) if ad = l

’ P
7. The relation "has the same prime factors as” defined on the set {(.‘ |
of. counting numbers. ‘

PART C: Applications ;
DISCUSSION:

1t is well known that equations of the form ax = b occur frequen"tly‘
in the.applications,of glementary mathematics. Likewise, there are
prob]ems arising outside of mathematics “that 1ead to congryences of
. the .form ax = b(mod p). Here a, .b, and p are assumed -known and
the problem is to find a value of x for which the congruence'is o
true. Unfortunately, even these simple congruences need not ha_ye 4
- any solutions. For example, .the congruence 2x = 1{mod -4) has no
whole-pumber solutions. Indeed, for every whole number x the num- *
‘ber' 2x 1is even and, conseqbently, is either evehly"di-yisible, by. 4 ‘

’ .
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; [i.e., 2x = 0(mod 4)], or else it.has remainder 2 when divid
‘ 4 [2x = 2(mod 4)]. (See exercise 5 of Part B for another ekampls-
" The following example illustrates how congruences may arise.

-EXAMPLE

A box of candy bars is 'such that
* .« when it 1§ divided equally among
three children there.are two bars
left over, and when it ‘is divided
equally among five children there
_ are four bars left over. What is
. ‘;he least numBer of bars the box
can ébntain?‘ ‘ :
We proceed by writing the
. o problem in ﬁathematica] form. Let

-x denote the unknown number of \ ,
bars in the box. Then the conditions described in the problem are
x = 2(mod 3) and- x = 4(mod 5). That is, there are whole numbers
‘ m*and n such that x - 2=3m and x - 4 = 5n or, expressing .
these facts somewhat differently, x =:3m + 2. and x = 5n+ 4. Con-

sider the two sets :

{whole numbers k Such tha&::£‘= m+2, m
{2, 5, 8,'11, 14, ...},
{whole numbers k' such that k =50+ 4, n =0, 1, 2, 3, ...}

= .
]

0, 1, 2, 3, ...}

=,
]

n

{4, 9, 14, 19, ...}.

The problem asks for the smallest number that is both in M and in

N. This number is 14. Thus, the smallest number of bars that the

box could contain is 14. ‘ A
There are many abplications of congruences to checking computa-

tions (see Project 6), to calendar and chkoqology problems (see exer-

cise 4, Activity 10), to the schedu]ing of tournaments, and so on.

Several of the references cited in the bibliography discuss these

1

"
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~ applications. In particular, the book, Invitation to NumberlTheory,

3

by Oystein Ore contains a chz;pter on appHcationS of congruences. . .

I3 . . Al

DIRECTIONS: o 3

1; A recipe for a large batch of
cookjes calls for 5 eggs.

/ Before baking deveral hatches
of cookies, there are a num-.
ber of cartons of a dozen eggs

and 3 additional eggs. After’

baking there is one egg left %
over. How many eggs were "
there to begin with? )
2. In the set of “ordinary real numbers. the number %-15 that number
which when multiplied by 2 gives®1l. ‘The . number %-in mod 5
arithmetic is defined similarly.
11 11 1, j - '
. a) Compute 2’3 3T 2 3 in mod 5 arithmetic. '
b):h student says .%~%-= % in mod 5 arithmetic just as in regu-
lar arithmetic.” What did he meaq,'and was he correct? e
3. Find a‘counfing number X whiéh satisfies both of the congru- C*ﬁ)
ences- x = 2(mod 5) and 3x = 1(mod 8).
4. A woman cashed a check at a %ﬁ

bank and the teller mistook
the number of cents for the
number of dollars and vice
versa. .After purchasing an
*item for 68 cents the woman
discovered‘the error, and at
that time she had exactly
twice'as¢mhch money as the , ‘ _
value of the original check. 'Find one possible value for the

check. , .

+




CACTVITY 13 : ’
THE EUCL IDEAN ALGORITHM AND OTHER SELECTED TOPICS

FOCUS:

- In this activity; the Euclidean algorithm and some og 1ts conseguences .
and applications are presented.

. PART A
DISCUSSION:

The mu]tip]ication of 357 by 231 can be considered as an 0peration on
the pair 357, 231, and there is a well-known method for computing the
product 357 x 231. This method 1s sometimes referred to as the multi-
plication algorithm. An algorithm is simp]y a well- defined procedure -
tp solve a problem. Frequent]y an a]gorithm to perform an operation
(such as the multiplication of two three-digit numbers) consists of
the step- by step application of a number of simpler operations {in
this case, a number of mu]tip]ications by one-digit numbers followed
by an addition). There is an algorithm, known as the Euclidean :lgo-
rithm,: to determine the greatest commOn factor.of two numbers
algorithm to compute ‘the GCF of two counting numbers is usefu] since
;he factors of either number may not be at all clear from inspection.
For example, it might be quite laborious to. determine by' ad” hoc tech-
niques that the GCF of 867-and 1802 is 17. , |
The Euclidean 'algorithm for determining the GCF of two numbers
is based .on the repeated app]ication of the familiar division algo-’
rithm. Recall that if a and b are countihg numbers, then there
are whole numbers q and r (usua]]y.knoWn as ‘the quotient and

remainder), 0 S r <'b, such that

=gb+r. .

We illustrate the algorithm by an examp]e. the problem of deter-
mining the GCF of 867 and 1802 posed above. We begin by using the

‘ | - 115
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division algorithn to write 1802 = 2-861 + 68. Since the GCF of
867 and 1802 (hereafter referred to in this example simply as GCF) .
must divide 1803, it divides both sides of the equation 1802 = 2.867 +
68; and sincet divides 867, it must divide 68 (review Activity 1 if
you are uncertain of the reasons for this). Consequently, the GCF
must divide 1802, 867, and 68. . : B
Agaip.'us%ng the division al-,
gorithm, we can write 867 = 12-68
+ 51. FReasoning as above, since
the GCF divides 867, it must di-
vide 12:-68 + 51 and since it di-
vides 68, it must divide 51.
Therefore, the GCF divides 1802,
867, 68, and 51. . °
Continuing, we can write
68 = 51 + 17, and since the GCF divides 68 and 51, it must divide 17.
At this point we know that the GCF divides 1802, 867, 68, 51, and 17.
Next we write 51 = 3-17 and we note ‘that in this application of
the division algorithm there is a zero remainder. This is the signal
that our work is finished and that the GCF of 1802 and 867 is 17.
Indéed, 7 :

v . frm
51 = 3-17

so.  68=3.17 +17 = 417
867 = 12-68 + 51 = 12-4-17 + 3-17 = 51-17.
and- 1802 = 2.867 + 68 = 2-51:17 + 4-17 = 106-17.

Thus 17[1802 and 17|867. Our work also shows that no larger counting
number divides both 1802 and 867. We conclude that 17 is the‘GCF of
1802 and 867. ‘

: £

DIRECTIONS:
1. Find the GCF of the following pairs of numbers:

a) 222, 98 o c) 1536, 244
b) 748, 132




-
>

2. Find the LCM of 5436 and 2618. (Hint: Recall Exercise 4, Part

‘ B, Activity 6.) : .

3. A student determined the GCF of 1802 and 867 by writing the
sequence of-divisions shown below beginning at the right

k 3 1 12 2
B 17 7751 Y68 867 1802,
" 51 51 816 1734
0 17 51 68
» a) Explain how tﬁe a]gorifhm wbrks. , B

Work exercises (la) and (lc) using this algorithm.

3 4
PART B
. DISCUSSION: ' , -

Cansider the prob]em of finding the GCF of 264 and 150. Usdng the

Euclidean algorithm we have ‘ .
‘ i) 264 = 150 + 114, ,
’?v 1'11) 150 = 114 + 3§) 3 s )

iii) 114 = 3-36 + 6,
- 36 = 66,

-~

and consequently the GCF' of 264 and 150 is 6. Beginning with 1ine
(i11) of this set of equatibns. we can write ‘

~

' 6 = 114 - 3-36. .
<

Next, using Tine (1i) to write 36 wgl50 - 114, we can write

114 - 3(150 - 114)—
= 4-114 - 3.150. '

1)

Finally, using line (i) to write 114 = 264 - 150, we have
| 6 = 4(264 - 150) - 3-150
or 6 = 4-264 - 7-150. //
t : N 4
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* This shows that the GGF of 264 and 150, namely 6, can be written as

: g 6 = x-264 + y-150, . .

"where x and y are integers. This is a special case of the follow-

ing fact.
get' a .and b be any counting numbers. Then there are
integers x and y such that .
. " _ GCF of- a and b = x-a +y-b.
Moreover, the GCF of a and b 1s the smallest counting
number thdf can be expressed in this form, that is, the

" smallest counting number that can be written in the form
x-a + y-b, where x and y are integers.
Counting numbers a and b are said to be re]atiyejx}pr1me if
the GCF of a and b 1is 1. ‘Thus. 3 apd ‘16 are Felatively prime,
" but 6 and 16 are not. The GCF of .6 and 16 is 2. '
DIRECTIONS
1. Write the GCF of each of the following pairs of countgng numbers ‘
_ in the form x-a + y-bi
< a)a=9, b=230 c)a=9, b=25 . -
b) a = 8, b.="28 d) a =18, b = 42
.2. dustify the following statement. If a and b are re]at}vely
., prime counting numbers. then there are integers x and”y such
) that x-a + y-b = y ' .

3. .Decide which of the fo]]owing pairs of counting numbers are
relatively prime. For each pair that fs re]ative]y prime, find
integers x and y such that x-a + y:b = 1. ,

~ ¢
a)a=9, b=20 c)-a =6, ﬁwb 40"
b) a=9, b=60 d)a=6, b=3
4. Is the relation "is relatively prime to" an equiva]ehce relation?
' If so, justify your claim; if not, find an example that {11lus-
trates that one of the properties of an equivalence relatjon
fails to hold. '




Appendix
AN EXAMPLE OF PROBLEM SOLVING

Y

s \
\

\
\\

"This appendix presents the so]u}ion of a problem comparab]e in diffi-
culty to some of those in Part B of Activity 9, using the organiza-
tional scheme introduced in Activity 8. This example might be read

‘ profitably before working the problems of Activity 9. Remember that

mathematics should be read with paper and pencil handy. You will

need ‘to pause to check calculations and’ to convince yourself that

assertions made in the text are va]1d o

DISCUSSION:

Here we consider a somewhat more difficult probiem of the same general
type as those of Part B of Activity 9. The approach outlined here
.again involves looking at special cases, searching for ﬁatterns. and
carefully examining the situation in“terms of what we know about num-
bers. This example was suggested by a problem in Mathematical Discov-
ery, Vol. II, by Polya (problem 15.48, page 166).

BACKGROUND FOR- THE PROBLEM

We have considered in Activity‘é‘séVeral examples of sets of numbers
that can be represented by arrays“of dots of a particular ggometriclv'
form. We continue this idea and introduce the concept of a trapezoid-
al number. As you would -expect, a trapezoidal number is one that can
be associated with a trapezoidal array of dots. *The arrays of inter-
est to us are ‘regular ones, that {s, arrays in which the.number of
qbts in any row is one more (or one fewer) than the number in adjacent -

» - 4
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rows. For example, 9 is a trapezoidal number since there are 9 dots

* We notice that there are also 9 dots . :

.
()

in the array__ _°

’1n the array .

of 9‘aots in a line

3

" toe 4
and in the (somewhat degenerate) array -

~

. e o o o o o In faCt'. 1f we ’

admit arrays of this last,type, then it is clear that'evéry numberlis
trapezoidal. However, it is also clear that some numbers_ have severs

al representations us ing trapezoida] arrays while others; 4 for = .

)

example. have only one representation This leads us to the basic
problem to be studied here.

THE PROBLEM

How many different trapezoidal arrays does each .counting

number have?

>

\

A SOLUTION OF THE PROBLEM

- C;CD

We begin by trying to understand the question. more prec1se11, First,

O

what is meant by "different" arrays?
Taking. for examp]e arrays for the num- *
ber 9, should the array '

be considered as different from o ?

e
R it .
M




Both arrays are Arapezoidal. I[f we view these two,afrays as differ-
‘ ent, then. since there are infinitely many orientations for the basic

array fotet ot we would conclude that there -are infinitely

v

- many different arrays for each number. This does not appear to be an
1nterestfﬁg answer to the question and we drop the 1dea of distin-
guishing between arrays on the basis of orientation. Instead we Jook
for a different way of viewing arrays. A common characteristic of
all the arrays discussed Just above is that there are 5 dots in one
row and 4 in another row, 5+ 4 =09, This observat1on provides a
viewpoint from which it i{s meaningful to consider all arrays with 5
dots in one row and 4 in another as equivalent arrays. It also gener-
alizes to the other arrays for the number 9, namely 9 =2+ 3 + 4
(al arrays with 2 dots, 3 dots and 4 dots are considered equ1va1ent)
‘L“"and 9 = 9 (all arrays with nine dots in a line are considered equiva-
lent). It makes sense to identify a trapezoida] array for the number
. n with a sequence of consecutive numbers whose sum is n.” The read-
" er should consider the geometric aspects of this identification. .
Let n be a counting number and define Z(n) to be the number of
different ways in which n can be written as a sum of consecutive
counting numbers. For the first 10 counting numbers, we have the
following diagram, which displays the trapezoidal arrays and the
values Z(n). , W

! n=1 |, 72(1) =1
- ) )
n=2 .. 7(2) = 1
n=3 e o0 ' o.o 2(3)22
[
N n=4 ... 2(4) =1
‘ )
N=5 veees JOL sy =2
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n =6 e60 000 0 * ere : ‘ 2(6-)\=4

- ) | _ ‘
.n=7 RN ‘c«: s e%e o ) 2(7)=2

. . = § ) V&
<‘;n . ‘ooorooto N o N 2(8) 1
“ . . * o
n=19 00000000 . e e e e o e o o o 2(9) = 3
e o . ‘,“‘lﬁ“;‘"'
n =10 IR . ' e o o o s , Z(id) =2
¢ * N

Data for n = 1,2, ... 40 are summarized in Table A.

. TABLE A

n | z(n) n | Z(n) (n) n -

1] | 2 s | | 2

2| e ]2 | 2 £ 32 |1

sl " ]2 | 2 B |4

¢ | 1 4 | 27| 2 3w | 2

5 | 2 15 | 4 3 35 e N

6 | 24 16 | 1 2 % | 3

2 B T U ISR - 4 v | 2
sl v |e 87| 3 | 2 ;38l 2

9¢ 3 j 1w | 2 2 39 { 4

10 | 2 20 | 2 4 a0 | 2

The reader fs invited to’'check several of these entriés.

I, : . 112 o -
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Our goal is to f1nd\a\ﬁgans for determ1n1ng ;3h) for an arbi-
tnary counting number n. We begin by examining the above data in
detail; i.e.,"we begin by using what yg_know. Although our goa] is _
to determine. Z(n) for a given n, it is useful to look at the \j"ﬁ .
values Z(n) and see if we can deduce a relation between these /A
values and.the associated values qf"n. This teghnfque, i.e., the g
compar1son of input n and output ‘Z(n), for specific values of"n,~
frequently- prov1des useful Q§§%?mat1on First of all, consider the
a's for which Z(n) = 1. We have n=-1, 2, ,4 8, 16, 32. That iss
- for the range of” n stud1ed here, Z(n) = in exactly those cases:
in whlch n is a power of 2. (Remember 2o = 1. ) . At this point we

would be Just1f1ed in.making,our f1rst conJecture (or guess or hy-
e PN
Conjecture 1: o L e '

oy

 pothesis):

-~
-

If n is a power of 2« then Z(n) = 1 That 1s, for
every whole number kg ( ) :

a
‘2

To keep track of progress, it is suggested that the nfs which are -
powers. of 2 be crossed out,on Table A. . ., S
3 There are many values of n for which Z(n) = 2, so let us by—
pass them for a moment and continue by 1ookwng at the values of n

for €hich  Z(n) < 3 and 4. N '

Z(n) =3 for.n=9,18, 25, 36

K}

and ' ' e

-, _ ” 5 - .
,2(n5 =4 for n= 15,'21, 27, 30, 33; 35,739, ¢

It is not easy to d1scern a pattern in e1ther case. However, we'dol

note that Z(n) =3 for n=9, for n=18 = 2.9, and for n = 36

= 2-18 = 2-2-9. Also Z(n)”- 4 for n=15" and n = 30 =-2-15.

With this clue we go back to the main table and we note tha}~ﬁ0r
every number n, for which both n and 2n. are included in the ,:' 4
table, we have Z(2n) = Z(n). We ave ready to make another guesi.

..
> * P




Conjecture 2:° o ‘ : .

a

For every value of n.. Z(2n) = Z(n).

"

The importance of this conjecture_is that if we know how Lo determine

Z(3),

then

2(6), 2(12), and Z(24) "can also be determined; if we

can determine Z(5) then Z(10), Z(20), and Z440) - can also be deter-
mined; if Z(7) can be determined, then so can Z(14) and.Z(28),

-and so on. It is suggested that those values of n for-whicH Z{n)
_can be determined fronf values of Z(n) for smallerr n using the con-

jecture, i.e., n = 6, 12, 24; 10, 20, 40; 14, 28; ..., be crossed ou
on Table A. o :
Which counting numbers remain? Only those for which the associ-

¥ ’

“ated value of " Z cannot be determined by knowing the value Z(n)

foria smaller number n. Therefore, if one accepts Conjectures 1 and

" 2, then only the data in the much shortened Table B remain to be ex-

vplaingd. A
- TABLE q . 5{“
I * * * ‘ * * R * * Ax | * * )
/n 31517 ]9 11 13 15 17 19‘21_23 252729 |31 B335 B7|39 |,
Z(n) 2l21213l2lzla)2l2lal2|3]|a]2]2]|a|a]244

It is now time to ask how our knowledge of the cdunting numbers
can be applied to aid in further understanding the situation. The

sequence of
natural to look for ways of subdividing the class. One natural wé}
is to divide it into primes and composites. Each prime number is -

den&%ed by an asterisk in‘Table B. We‘observe that every prime num-

ber

n

has

n's remaining is a sequence of odd numbers, and it is

Z(n) = 2. On this basis we formulate another hypothesis.

RY




Conjecture 3:

‘ If n dis an odd prime, then Z(n) ="2. | , .

Let us review again what we know in lfght of this conjeqture. We re-
call from Activity 2 that one of the chgracteristics of a prime num-
ber is that it has exactly two factors. Therefore, another way of
viewing Conjecture -3 is that if n 1is an odd prime, then Z{(n) gives
‘the number of factors. o l - »

Let us digress for a moment and displax/fae arrays for n if it is .
an odd prime. If n is odd, then n = 2m + 1 for some whole .number
m. Thus n=m+ (m+ 1), and n has been writ$en as the sum of
two consecutive counting numbers. The other.array is the trivial one

with n dots.
e | o
. I argoer
. e e e..e | ' O 00l
: ‘ m+ 1

3

n dots .
.m+ (m+1)=n.
Notice that this remark applies to all odd numbers whether
» primes or not. We conclude that every odd number greater than 1 has -
at least two arrays, a conclusion which is consistent with Conjecture
. 1. Why?

------------------------------------- R R LR LR T R R

g We proceed by following up the idea which led to Conjecture 3.

In that discussion our concern was with prime numbers. ﬁowevéf. every
~counting number can be written as a product of prime numbers (the re-
sults of Activity 3 are included in "what we know"), and- this éppearé
”to be a connection worth exploiting. Write the prime factorization
of each n 1in the empty cénter row of Table B. The result, omitting

«

"xrimes. is,reprodu'ced on the next page in Table C.
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ture 3 we might propose

o TABLE C - -
A S— ’ ‘ — ‘T‘II'
n.  so | 15| ]| 5| 27 | 3 | 35| 3

prtme factor: | 53 | 3.5 | 3.7 | 55 | 33 | 3t | 57| 3
jzation. . " - 33 (35|37 55433 3 ~3_1l»> 5-7,1 3-13 )

z(n) | 3 4 | 4 3 4 ] ] I I

We qbsefve that each n that can be written as a product of two
distinct €dd primes has Z(n) = 4. Taking this together with Conjec-

A

Conjecture: ' ‘ : ‘

A%

If n= PP " Py where p;, bz, cee Py
are distinct odd primes, then Z(n) =

. - .

k=1 and k=2 and n S 40, that is for numbers less than or
equal to 40 that have either one or two dist1nct odd prime factors.
In other words, it checks for all the data contained in Table A. One
might claim that this is a sufficient check and stop. However, it
pays to be skeptical an& to try another:case: Let n = 105 = 3.5-7. 4_
In this case k = 3 and our conjecture is (105)

However, we have o : ' a

Using the data of Table A we see that this 'conjecture'checks when ‘

‘105 = 105 -

= 52 + 53 ‘ ‘ oo
. ~=34+ 35+ 36 ‘
=19 + 20 + 21 + 22+ 23
=15+ 16+ 17 + 18 + 19 + 20
=12+ 13+ 14+ 15+ 16 +17+18 - .y
=6+7+8+9+10+11+12+13 + 14 + 15
=1+2+3+4+5+6+7+8+9+10+11+12+ 13+ 14,

» >




" als that appear to be reasonable, and that may in fact give correct

results in many.special cases, may nevertheless be false. They do
not give correct results in general, i.e. in all cases. No number of

That s, Z(105) = 8; consequently this last conjecture 15 ac-
tually false even though it held for all the data'in'Table A. This
points out the need for mathematical justification or proof. Propos~

examples or special cases can ever prove that an assertion is true,
while a single example (as above) may prove it to be false. _Eiamples
that prove an assertion to be false are known as counterexamples and
play a very important role in mathematical problem solving.

The failure of this last conjecture 1ead§ us to believe that
looking for a method of computing Z(n) directly in terms of the num-
ber of prime factors of n 1is not fruitful. Rather than-give up com-
pletely what appears to be a promising idea, we modify it slightly
and consider the number of divisorsiof n. If .n is the product of
distinct odd primes, then all divjsérs of n are the products of
the prime factors. Data-can be obtained from Table C. We include
data for the ﬁumbgr 105 which proved to be'he]pful‘as a test case

‘Just above. y L. v

n 15 | 21| 33 |35 |30 105
prime L5l a7 s [s 3, ;
Divisors 53'»13 o ‘111 3|7 35 |13 39 15,21, 38, 105
st IR T IR AR N

~Z(n) 4 4 4, 4 4 , 8

This data provides evidence for another conjecture.

/
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Conjecture 4: o

A

If n is the product of distinct odd primeszﬁ
then Z(n) equals the number of divisors of

n (1nc1udfng 1"and n).

?

The only remaining cases from Table A to be considered are those
" in which n is the product of odd primes, not all distinct. Rele-
vant data taken from Table A and two additional cases are given below.

. n 9 25 27 45 75
L
| prime £ ; "
rime Fac- ] -
torization | 33 5.5 |3.3-3 | 3.3:5 | 3-5 5,
“2(n) 3 3 4 6 -6

o

We invite the reader to find the arrays that show that 2(45) = 6., .
. Taking a cue from the argumentlleading to Conjecture 4, we aug-
merit this table by noting the divisors and the humbervof»divisors4,

5 . ;
¥ . 4
.

n - 9 | s | 22| 4 75

e

& 113|135 1.3,5
Divisors {1, 3, 9 | 1s 5. 251 9,757 ]9, 15, 4515, 25, 75

Number of , .
Divisors 3 3 4 6 6

a

- Thus, the fact that n is a product of distinct odd primes does
not seem to be important in Conjecture 4. That conjecture can be
modified to take this observation into account.

5
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COnJécture 5:

, - r — -
' If n is a product of odd primes, then Z(n) fis
. equa) to the number of divisors of n (including
.1 and n). '
—

o v

£ -

Let us now summarize our work. Our problem
is to determine Z(n) for an arbitrary
counting number n. We know that n. éan.be
written as a product gf primes. If it is a
power of 2, then the first of our conjectures
applies and we propose that Z(Zk) = 1.
Powers of the prime 2 in the factorization
of n turn.out to be unimportant in the de-.
_termination of Z(n). Remember Z(2n) = Z(n)
for every counting number n . 1is one of our conjectures. ‘&f n"is a
product of odd primes, then Conjecture 5 tells how Z(n) 1is to be
determined. Let us collect all of this into one final conjecture.

inal Conjecturef

A}

o

i

Given any whole number n, Z(n) is equal to the
“ number of odd divisors of n, dncluding 1 (and .
n if n is odd). e :

.

This conjecture is actually true and can be shown to be so by a care-
ful mathematical argument. -
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NUMBER THEORY
"+ INSTRUCTOR™S MANUAL

< -

INTRODUCTION:

This unit, 1ike other units of the Mathematics-Methods Program, in-
volves one as an adult learner in act1v1t1es»whicﬁ’haVé,implications
for teach1ng~ch11dren By working'with concepts that children might
learn, by studying the problem solving processes that children might
use and by do1ng activities that might be modified for use ‘with -
children, .one grows in understanding and enJoyment of mathemat1 5.
The objective is to increase both students' c0mpetence and thei
sire to teach mathématics to children. '

The "Introduction to the Number Theory Unit" which appes
pp. 1-4 of the unit des€ribes the content of the un1t>and expld
the spirit in which the unit was written. It would be a good idag
- for the instructor to become acquainted with this “introduction in the
process?of .deciding whether and how to use the unit.

THE CONTENT OF THE UNIT: ~ ‘ k

a~

As is noted in the Introduction, the unit contains six major parts.
They are (1) an overview which focuses on the hiétorical development
of number theory and the role of number theory in the elementary
classroom (pp. 7-13); (2) a list of terms, definitions, and notations '
used in the unit; (3) Section I which presents the basic concepts of
divisibility, primes, composites, and factorization; (4) Section II,
concerned with problem solving, which explores a number of easily
understood but challenging problems, presents an organizational

~ scheme for attacking problems, and provides opportunities for solving '
problems of various difficulties; (5) Section III, on applications,

S




which il1lustrates how some of the ideas introduced earTier can be ex-
tended and applied; and (6) an Appendix which present; another exam-
ple of problem solving. At the end of the unit, a substant1a1 b1b11-
. ography can be found.

TIMETABLE SUGGESTIONS

The time spent on this unit will depend upon a number of factors, in-

cluding the mathematical background of the students, the time avail-
able for the unit, and the relative emphasis to be given to mathemat-"

ics content and to’teach1ng methods. The chart below suggests three
alternatives for schédu]tng the work of the un1t, each predicated on
a different set of values and priorities.. we have characterized the
alternatives as: '

A. .Mathematics & Methods. Leisurely~-for an integrated content and
- methods course in which there jg-time to deal with this unit in
some detail. About 20 25 sing]e periods would be needed.

- B. Mathematics & Methods. Rushed--for an integrated content and
methods course in which this unit has low priority or in which
_time is at a premium. About 11-15 single periods would be
needed. Co / v

C. Mathematics Emphasis-—for a course wh1ch is concerned ma1n1y
with mathematics content for prospective teachers. About 15-20
periods wou]d be needed.

These are just three of many possible alternatives; we hope they will
be helpful in deciding how to use the unit. The numbers in the table
. below are estimates of thé number of class periods needed for each
activity. The symbol "HW" indicates that all or part .of the activity
could be done as homework. When "HW" precedes the number of periods,
advance preparation by students is-suggested; when "HW" follows the
number of periods, homework to finish the activity is intended. "HW"
alone indicates that the entire activity could be done outside of

class.

14p




'Alternative Timetables

Activity (A) | A. Mathematics & | B. Mathematics & |C. Mathematics
or :Project (P)| Methods, Leisurely Methods, Rushed Emphasis
Overview HW, T HW,.5 HW; .5 .
Al T .5, HW .5, HW L5, HM
R 1 .5 .5, Hu
A3 w 1-2,HW _© 1,HW HW, .55 HW
Pl HW, ,5 HW, or omit HW,.5
A4 1,HW .5,HW ©.5-1,Hu
P2 HW, .5 Hw HW, .5
AS 2, HW 1-2,HW 2, HW
A6 2, HW 1-2,H4 1-2,H0
P3 HW, .5 HW HW, .5
A7 Hw,; 1-2 T HW,1 HW, or omit
A8 2-3,HW C1-2,hw 2-3,HW
A9 HW W HW
P4 HW, .5 HW, or omit - HW, .5
A10 LW .5, HW 1, HW
PS5 HW, .5 HW, or omit HW,.5
All 1, HW .5-1,Hw 1,HW
P6 HW, .5 HW, .5 HW, .5
Al2 1-2,HW 1,HW 1-2,HW
A13 1-2, HW LW 1-2,HW
Appendix HW, 1 ,HW HW,.5 or omit HW,1
Total 195 - 203 10} - 10} 153 - 20

—




OVERVIEW OF NUMBER THEORY -

!

MATERTALS PREPARATION:

(Optional) The Mathematics-Methods Program slide-tape presentation
entitlied "Overview of Number Theory. "

COMMENTS AND SUGGESTED PROCEDURE:

The content of this activity may be either the s]ide tape presenta-
tion or the essay on pages 7-13 of the unit. No matter which alter-
native is chosen. students will gain more from the experience if they
read the questions (1-4, pp. 5-6) first. These questions can ‘serve
as advance organizers to enhance the efficiency of their viewing or-
reading. Discussion of the questions could be a fairly brief class
activity.

ANSWERS :

The comments which follow are not given as recommended answers to the
questions posed in the unit, but are offered as samples of {deas
which may be mentioned in the discussion

1. Two major reasons for 1nc1ud1ng ‘the number theory strand in ele-
mentary school mathematics are (1) to extend and clarify con-
cepts in the study of, the whole numbers and the rational numbers,
e.g., factor, multiple, least common denominator, GCF. and (2)
to provide problem-solving experiences, e. g., the d1scovery of
number patterns and generalizations. In additfon to these sub-
Jject-centered reasons there are learner-centered reasons includ-
ing the possibility of helping students to enjoy working on

' puzz]es’and problems and the benefits of replacing dry tiresome

4 . ’




drills by self-directed practice in the géryice of solving a

problem or detecting a pattern.

Problem-solving experiences such as those mentioned in (1) above
provide opportunit%es-for both individual and group exploration.
Children 1like Jooking for number patterns and properties, and
many of these can be identified by.chfldren without a great deal
of teacher direction, e.g., "odds" and "evens." Carefully cho-

. sen materials and activity cards often help to make number pat-
terns more obvious. Consider, for example, children working
with odds and evens, E+ E=E, E+ 0= 0: etc. (the materials
used 9in slides 24 and 25). On the other hand, some of the top-
jcs associated with the application of number theory ideas to
rational numbers, e.g., least common denominator, may need more
carefu] teacher direction.

Fach right triangle with integral sides (e.qg., 3, 4, 5) corres-

ponds to a solution of the equation x2 + y2 = zz. For example,

32 4 42t 52, ‘

t

> There are eight magic squares using the
numbers 1 through 9. Each can be obtained*

from the one in slide 10 by a series of
rotations and)ref]ections.




| SECTION I . ‘

DIVISIBILITY PRIME NUMBERS, AND FACTORIZATION

INTRODUCTION: o

‘This section includes the basic concepts of prime and composite, fac-
tor, mu]tip]e. and div151b11ity These topics appear explicit]y in
most elementary. school mathematics programs, and are often presented
through activit1es similar to those of this section.

MAJOR QUESTIONS: o ; BRI

o

These discussion or essay -format questions attempt to capture the

essence of the section. They may be assigned as homework, -or modi-

fied for use as examination items, or discussed in class. The com-

ments wh'ich follow are not given as defirnitive or even model answers, ‘
Put we hope they may beuseful jn stimulating thought and discussion.

1. The prime numbers act as the building blocks for the counting
numbers, when the method of constriuction is multiplication.
Another way of constructing the counting numbers would be to
build on one (unity) using addition (or a successor function) as
the method of construction. '

(e.g., 1=1,2=141,3= (1+~1)+1,4='((1+1)1+1)+1
or, 1=1,2-= S(1), 3 = S(S(1)), 4 = S(S(s(1))), etc.)

i

2. The arguments advanced to support the use of trains and tiles
are ‘311 the familiar ones concerning the advantages of using
concrete embodiments to develop concepts,’

3. In the multiplication tab]e all the products which are not 1 x n
or n x 1 will be composites, but it does not follow that all the
composites less than 100 will appear in the 10 x 10 multiplica- ‘

A
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" tion table. “For example. 39 = 4 x 13 does not appear in the
"table. Also the row and the column of mu]tiples of .1 contain
some primes and some composites.

Most students will probably argue in support of introducing
prime numbers in the elementary school. Reasons may include the
usefulness of prime factorizations (in LCM, GCF, etc.), the de-
sirability of forming concepts and classifications of numbers,
and the motivation and positive attitudes that can be developed :
through games and other activities. '

Feasible 'topics for the elementary school might include just
.about any from the entire unit, but the topics from this” section
are most appropriate.

This question asks for a description of the method of finding
the LCM of two numbers by "trains" (c.f., Activity 2). One lays
out two trains or rods (of the respective lengths) starting
“even," and searches for a place where they end "even." Ffor
example, the diagram below shows that the LCM of 6 and 8 is 24.

8 8 8 3x 8= 24

4 x 6= 24

even ' even
In addition to the method of constructing the counting numbers
given ‘in (1) above, one might mention the construction of an
fractions from the unit fractions (fractions in the form *) by
. repeated addition, the construction of Euclidean geometry from
points by set operations (the point-wise model of geometry), or
all rigid transformations in the plane 7as a composition of flips
(or slides, turns, and flips).




ACTIVITY 1
DIVISIBILITY o

MATERIALS PREPARATION: , | )

None . L

COMMENTS AND SUGGESTED PROCEDURE: '

- The .objective of this activity is to explore the notion of one number
“"dividing" another. -As is pointed out in the discussion, the term
"divides" in this activ1ty refers to division without a remainder or
“divides evenly." After students have met the concept and its nota-
tion (alb), they investigate whether a|b and b|c implies a|c; a|b and
alc implies a|b + c; a|band a|c implies a|b - ¢; a|b and alb + ¢
implies ajc; and a|b and alc implies a|mb + nc. The first part of
the activity will probably require some exposition and discussion,
but the conaectures are intended to be the type/fﬁgzﬂi;;ﬁents are .
able to work out on their own.

A ANSWERS :

1. 642 42=6n .

n=7 N T ‘
‘6|18 18=6m © m=3 )
42+18=67+63=6(7%3) =610  so06](42+ 18)
42 - 18=67+63=6(7-3)=64 " so6|(42-18)

2. 6|42, but 6]15 1s false, t.e., 615

3. Yes, alb ~>b = ax and ajc ~>c = ay so bc = ax-ay.
bc = a(xay) shows albc. It is even true that azlbc.

"

4. The conjecture is correct. The three examples g1yen»shou13 be

similar to the following: .
Llet a = 2 b=6 b+c=10 . albbecause 2|6 ‘ .




al(b + c) because 2|10. Now if b+ c 10 and b = 6, then
= 4 and ajc since 2|4. : :

The conjecture is correct. The three examples given should be
similar to the following:

Let a = 2 b=6 ¢ =24.

a|b because 2|6, b|c because 6]24.

alc 15 also true since 2|24.

The assertion is correct. An example of it is the,fo]]owjng:
Let a = 2 b=6, c=8. v -
alb because 2[6. alc because 2|8. (2b+ 3c) = [(2-6) + (3-8)]

=12 + 24) = 36. 2|36 so a|(2b + 3c). An argument in spécial

case and general case supporting the -assertion is the following.

SPECIAL CASE ' GENERAL CASE

since 2|6 6 is a multiple of 2 sincé alb b is a multiple of a
=2-%x 3 1 b= na ' '

since 2|8 8 is a multiple of 2 since ajc ¢ is a multiple of a

8=2x4 : . c = ma .

= [(2-6) + (3-8)) = [(2-2-3) | 2b + 3c = 2na + 3ma =va(2n + 3m)

+ (3-2:4)] = 2[(2-3) + (3-4)] so a|(2b + 3c)

so 2|36 - e
[

/

ACTIVITY 2
PRIME AND COMPOSITE NUMBERS

MATERJALS PREPARATION:

b
Sets of about 20 tiles (square or rectangular), one sét per student

or group of 2-3 students in half the class; sets. of Cuisenaire. rods

. (about 5 of each co]or). one, set per student or groups of 2-3 stu-
-]

dents in half'the class. .
. .f, . a9 149




COMMENTS AND SUGGESTED PROCEDURE:

- It 1s intended that half-the class will work 1nd1vfdua11y;or'1n small
groups on Part A while the other half works 1ﬁd1vidua11y‘or in ‘small
groups on Part B. As individuals and groups finish,théy should share
and compare the experiences they have had working‘6a the concepts 8

prime and composite numbers in these stwo different‘formats‘(arrays of
v tiles, trains of rods). The 1n2truictor may wish tp check that the
tables have been filled in and the questions answered completely’ and

correctly before concluding the activity with some Br?ef:cumments on

the usefulness of these two embodiments in explaining prime and’com-

posite nulbers to elementary school children.

ANSWERS :

Part A

\

1. There are two array§nandqtherefore two d1v1sorsvof 2.

2™ The completpd table is

z . .
Number of Dimensions .
Number of Rectangular of Each Number of | - Divisors
Tiles Arrays - Array ‘Divisors
, 1% 3 :
3 2 3 x.1 2 1,3
_ 1 A~ .
4 3 2 x2 ~ 3 1,2,4 '
4 x 1 .
1 x5 :'
5. 2 5 x ] v2 1,5
1 x6
2 x3
6 4 3% 2 4 },2,3,6
6 x 1 s
e 1x7
1x8 ”
. 2 x4 ~ o
8 . 4 4 %2 4 1,2,4,8
> 8 x 1




3 L . : e T X : B R M

' Yp - B -
. s . . A

PR . o , -

- TABLE (contif

‘ N T Number-of | Dimensions

Number'bf 'Rectangula® .|. of Each = . Number'of~ . Divisors -
» ‘Tiles | . - Arrays Array : Divisors :
1 L ‘ 1 1xo .
s . |9 .73 3x 3 . 3 1,3,9
R { 9x1 \ :
o , 1 x 10 - )
2 x5 .
10 . | ’ 4. 5% 2 4 1,2,5?10
§ - ~ 10 x. 1
-~ , 1x 11. L
- 2 1% 1 2 1,11
) 1x 12 '
. 2x6°
3x 4 .
6 X 2 A ~ ’ . .
, 12 x 1 o P
3. 2,3,507,11 o L
‘ 4. The composites between 2 and 12 (inc1us1‘ve) are 4, 6, '8_, 9, 10,
12; the ‘composites with an-odd number of divisors (4 and 9) are
perfect squares. o f
5. 1 ' .
i 7
- Part B B
1. 2 trains
i ! . .
2. The completed table is . v K
Number of
- Colgr of Rod "~ Trains of Number of | .Divisors
Rdd Number -] Equivalent Rods Divisors - .
Red 2 2 2 1,2
Tight R . | s
Green .3 2 - 2 , 1.3 -
v Purple 4 3 3 ' 1,2,4




5 _ . N
" TABLE Teont.) =, ' o S
. Iy . : : _ ‘ . . . //
I . Number of . ! _ 1
Color of Rod _ Trains of , | Number of Divisors |° -
Rod Number | Equivalent Rods Divisors ‘ -
Yellow : s _ 2 ~ 2 - 1,5
‘Dark o - . a4 , .
Gooan 6 “ 4 1,233,6
Black 2 1 : T 1,7
Brown - | 8 -4, o o4 | 1,2,4,8
Blue 9 S3 314349
Orange. 10 4 I 1,2,5,10
See p.24 | . I '
i 11 2 2 | L
of i 12 6 6 (T 1,234,
of unit ‘ ; : . 6.12

@
\ v

3. 2,3,5,7,11; primes have exactly two divisors

4. The compos1te numbers with an odd number of trains (4 and 9) are
- perfect squares. '

5. 1, the unit.

! 4 . 13 . N .
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v, ACTIVITY 3 .. S

FACTOR TREES AND FAGTORIZATION =~ ° -

MATERIALS PREPARATION: | L
None : ‘ : o
COMMENTS AND SUGGESTED PROCEDURE: ~  * . | ,

The content of this act1v1ty is divided 1nto three parts: Part A:
Factor Trees, Part B: Factor1zat1on into Primes, and Part C: Expo-
nential Notation and the Prime Factorjzation Theorem., Most of this




. ) . L . " R B
"material should be easy for students to master by read1ng the dis-
cussions and f0110w1ng the direct1ons ' Some points. worth discussing

are the reasons for admitting factor1zation which has 1 for one of

" the factors,’ and que;t1ons A3, A6, BE, B5, and C3. o
ANSWERS:: : "PART A: FACTOR TREES
i. 210 - gsg <
5 42 6 143 .
/\ VA AN
7 6* 32 1113
AN
23 !
i V3
2925 ’ 1785 .
/\
5 585 3 5% ,
S S :
) 13 45 5 119
N S
— 59 7 17
A _
33 .
2 a) 30 30 30
AN A /N
3 10 56 f.;:, 2 15
/N N\ ~ VAN
2 5 23 | 3 5
: T
b) 36 36 36 _
S SN VS
3 12 3 12 . 6 6
: a s /\ . VAN AN
, 2 6 4 3 2-323 ,
S A A
‘\(.2 3 22 §
v ‘ N \ i
.36 36 6
SR 2 18 - 2 18,
! AN N AN 2\
\ 3322 3 6. 2 9
T s 23 * 33
13




3.

c) There are 15 different comp]ete factor trees for 72

them begin with.

Al

. six ways given in (5) above.

72
S
3 24
AN\

2, 12

[}

>s

72
2 36

/\

.

.233

and preceed from 36 in the

“Six of

The reﬁaining nine are:

72
N\
24
N\
38
N
2 4
N

w

2 2-

72
N
6 12
A /\4
A
2

&

N

Three examples of composites with unique factor trees are

5,

A\
5 7

9
A\
33

s and’

27

A\
39

N
33

The property common to such numbers is that they are e1ther

squares of pr1mes, cubes of primes, or have exact]y two prime

factors




- fork), primes may be thoyght of as‘complete trees in themSelves.

.

. o .

I P :
2

a

._'éince each prime has only itself and one ‘as factors, .and since.

1 has been "ruled out" of factor trees (because factoring out a
1 permits an unlimited number of branches to sprout at every

N

30=2x3x5 . . ' R .
36 =2x2x3 x 3 >

39 = 3 x 13 :
60=2x2x3x5 | )
72=2x2x2x3x3 |

Yes, every composite number may be written as the product of
primes. The primes that one must multiply together are the
primes which appear at the "twigs" or "acorns”" of the number's
factor tree. ;)' ' |

Having the gree grow upward has the advantage of more closely
resembling a real tree, but there are two main disadvantages:
First, as you write ubward yoﬁr hand covers the work you have
already done, and‘may cause a smear especially if you are work-
ing in ink. Secondly, it may be difficult to estimate in ad-
vance how mu&h $pace to a1iow to be sure that you will havg

‘enough space as the tree grows upward. Most elementary school e

children don't seem to mind that the "trees" are "upside down."
The tree may even be considered as a root system--showing that
the composites have their roots in the prime numbers.

.PART B: FACTORIZATION INTO PRIMES
iOO = 2-2-5-5
Example: 72 =9 x 8 E 72 = 12 x 6
The primes are the fundamental or primary multiplicative build- .,
ing blocks of the counting numbers greater than one. Composites

can be thought of as being composed of primes. The composites
are compound numbers.

' f

Yes, yes. The primes must be'thought of as haying only one fac-
tor, since factors of 1 are not considered.

15
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: 5. A number cou]d have several prime factorizations if 1 were con-
sidered to be prime, for example 6=2x3 6=2x3x1 1
6=2x3x1x...x1 ‘ - ' "‘
. - o 1
vPART'C: EXPONENTIAL NOTATION AND‘THE PRIME FACTORIZATION THEOREM 1

1. 39=3x13 - V ‘
0= 2° AERE |
" o512 = 27
27 = 33

b

2. If m 1s a composite counting number, then m" is a product of
prime powers; that.is, there are counting ‘numbers e ez; N
e_and distinct prime numbers p,, p,, ..., P, Such that

n ¢ 1 2 n .
e, e, e

m=p; Py ey e : : '

n
3. (i) The three special cases should be similar to the following:
let p=2,q=3,b= 12 .Then 2|12, 3]12, 2:3 = 6 and 6|12.

(i1) A counterexamp]e in the case where p or q 1s composite
might be similar to the following: Lletp =3, g=6, b = 12. ‘
Then 3|12, 6]12, but 3-6 = 18 and 18{12 hence p-q|b, is false.

(i11) p|b and d|b means. that in fhe'prﬁﬁé'faetorization of. b.
both p and q appear at least once each. So b may be writ-

ten” b = p x q X (other factors) since the order of factors may .
 be rearranged {multiplication is commutative). Hence, obviously‘
p-q|b. _ '
| PROJECT 1
v E E-PRIMES X ; ‘
~ MATERIALS PREPARATION: _ o .

'\
None

.
«ui




COMMENTS AND SUGGESTED PROCEDURE:

The Projects in this unit pr;vide‘brief excursions into mathematical
ideas related to the main body of the unit, but not crucial to it.
Each Project can be dealt with in a variety of ways; it may be given
as optional or required homework assignments; it may be done in class
_individually or in small groups; it may be presented to the class by
the instructor or by a student or group of students who Hﬁve prepared
it in advance; or it may be omitted. The prob]em-éo]ving goals of
this unit (i.e., the pracess goals as distinct from the content
goajs) are best served when seach student has the opportunity to grap-
ple with and solve at least some of these-problems on his own. How-
ever, limitations on the time available or deficiencies in the stu-
dents' background may prevent this.

ANSHERS: N v
1. (2, 6, 10, 14, 18, 22, 16, 30, 34, 38}. In fact, an even number
is am E-composite if it is a multiple of 4.

-

Yes, the argument is analogous to the argument given for the
existence of a factorization into ordinary primes.

4 =2 x 2

8=2x2x2
12=2x6
16 =2°x2x2x2
20 =2 x 10

2
28=2x2x6
28 = 2 x 14

.

36=2x18 . 36=6x6

An even number is an E-prime if it ds not divisible by 4 (i.e.,
has a factor of 2 but not of 22).

1




ACTIVITY 4
TESTING FOR DIVISORS «

MATERIALS PREPARATION:

None

°

COMMENTS AND SUGGESTED PROCEDURE :

H

It is expected that Students will know or can discover by working
together in groups the tests for d1v151b111ty by 2, 3, ..., 13.' Af-
ter introducing the activity with some gommenps on the usefulness of
being able to tell by inspection the factdrs'of,a whole number, you '
can set the class to work in groups of 2-3 finding the divisibility
"rules and stating them carefully, While the grohps are working you
should be available to encourage the hypotﬁesis-making and testing

process, to provide an occasional hint, but not to pass out the an-

swers. ' ,
ANSWERS:
The table "Summary of Divisibility Tests" (p: 37) shoutd be filled in ‘
as follows: -
Divisor A ) Test
2 Is ones digit 0, 2, 4, 6, or 87
3 Is sum of digits divisible by 3?
4 Is counting number defined by tens and ones digits d1v15-
B ible by 4? o -
5 Is ones digit 0 or 5? ’
7 From the right, grgup tH@ dig1ts by threes and mark

these groups altermytely po;itive and negative; then to-
tal the signed groups™\ Is this sum divisible by 77

&

9 Is sum of digits divisible by 97 : 1
10 Is ones digit 0? .
11 Mark digits alternately positive and negative from the

. right; then total &he signed digits. Is this sum divis-
ible by 11? ' - |




.

Divisor | : Test

‘ .13 Compute the sum as in the test for 7. Is this sum divis-
‘ible by 137 = ‘ : .

1. a) 78 has a factor of 2 and a factor of 3. 78+ 6 = 13. Since
13 is prime, 78 = 2 x 3 x 13 is the prime factorization.

b) 693 is divisible by 3, 7, 9, ‘and 11. The prime factoriza-

tion is 693 = 32 x 7 x 11. \

Ce

c) 12,760 is divisible by 2, 4, 5, 8, 10, and 11. The prime
factorization is 12,760 = 2 x 2 x 2 x 5 x 11 x 29. ¢

d) 362,540 = 22 x 32 x 5 x 11 x 173
2" a) 563 - 365 =198 = 22 x 9 ]
"b) 378,501 - 105,873 = 272,628 = 30,292 x 9

c) Let N= l'OQa2 + 10a1 + ay so if N* is N with its digits in
reverse order, N* = 10025 + 10a; + a,. Assuming a, > 3y,
N - N* = IOOa2 + 10&1 + ao - (IOOa0 + lOa1 + az) = 99&2 -
99ay = 99(&2 - ao)., '
So N - N* is divisible by 9 (and also by 11).

PROJECT 2
HOW MANY NUMBERS TO TEST

jraATERIALs PREPARAT ION : :

None ) . .

COMMENTS AND SUGGESTED PROCEDURE:

"This Project is concerned with the fact that in testing a whole num-
ber n for divisors, one'nped not be concerned with divisors larger
than v/n. Indeed, if d|n and if d > /n then n = dx where x is an-
other divisor smaller than /n. Therefore, d would have been dis-
covered as a divisor when x_ was tested. 'The alternative ways of

- - 19
Al .
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dealing with the Project are mentioned in the 1nstructor's notes to

|
|
Project 1 on p. 17. : ‘

ANSWERS: - s . -
1. The completed table reads: i
Number ) 1 Smaller ofA
N Pairs of factors of N | the pair L(N)
1,24 1 4
, 2,12 2
24 3,8 3
. 4.6 4
1,12 1 3
.12 2,6 ¢ 2 /
| 3,4 3 |
1,36 1 6
2,18 2
36 3,12 3
4,9 4.
6.6 6 |
1,60 1 6. ,
2,30 2 , ,
3,20 3
60 4.15 4 "II'
. 5,12 5 v
: 6,10 6
2. IfN=24 n=4
. N=12 n=3
i N=36" n=6 ' .
"N=60 n=7 ﬂ o : -
In each case L(n) < n o ' -

3. To prove: If p-q = N, then either p or ‘q ‘must be less than
or equal to n. Here n 1s the largest’counting number such

that n:n < N. L . *
Proof: Suppose that both p > n and q > n, and suppose that
p and q are labelled so that p > q. Then q2 > ‘nz and
q2 < p-q=N. Consequently, n fs not the Jargest counting num- °
sber such that n-n < N..*~ ' . . ' | : .
S 20° e o ‘
Gi)




The largest number, that must be tested is the largest cointing’
number whose square is less than or equal to N.

» 100 64 -. | 1008 : 80 . 230

10 g 31 8 18

Reason | 10 = 100" | 8% = 312 < 1008 | 8° 15% < 230

125 100 | 9% 322 5 1008 | 97 162 > 230

P

< oacTiviTy s @
DISTRIBUTION OF THE PRIMES

MATERIALS PREPARATION:

Chart 1in upit (p. 45) grepéréd on chalkboard, chart, overhead projec-

A

tor transparency, etc. .

COMMENTS AND SUGGESTED PROCEDURE: . R

The content of this activity is divided “into-three parts: Part A:
Identification of the Primes (Sievimg Procedure); Part B: The Un1im-
ited Supply of ﬂrimes (Constructing Primes); Part C: Strings Contain-
ing No Primes (ConStructing Sequences of Consecutive Composites).

The main ideas of the activity make interesting exper%ménts worth

" doing and discussing in class. Also included are a number of exer-

cises which can be done 1nd1X1dua11y outside of class after the main
ideas have been presented (e.g.: A: 4, 5, 6, 7, 8, 9, 10} B: 4

C: 1, 2; Challenge Problem.)

ANSWERS:

1. The arrangement'of the numbers 2, through 103 1is. intended to sué-
gest the means for crossing out all the composite numbers. A1l
the numbers, qfter"z in the first column and all the numbers .in -
the third and fifth‘co1umns are crossed out because they are
even (1.e., multiples of 2). A1l the numbers after 3 in the

21 —
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second co]umn are crossed out because they are mu1t1p1es of 3.

(The numbers {n the fifth column are a150 multiples of three,
- but they have already been crossed out because they are even. ‘

The even multiples of 3 are mu]‘tip‘lés‘ of 6.) The multi‘ple‘s of ’

5 and of 7 are crossed out with the slanting lines shown in the ‘

diagram below. The numbérs which remaih have been circled, ‘

They are primes because we have crossed out all the multiples of -

all the numbers less than 10 and 10-10 = 100. (The multiples of

8 are also multiples of 2 and the multiples of 9 are also muiti-

ples of 3, and so have already been crUs_sed out.) '

00

4
Lo
6
2

4

Xi
2

@O

c \w .

® ®®®e<@®@@@'

-

@®

;&g@@;%%g

A0
H

1
S0 DOy

—
i
~N

|
s S
: | &?/ 2:3,6

2. The crossing lines are reminiscent of a sieve. The composites * -
. are held back and the primes sif[t,hrough,

22
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The patterns mentioned in this question are shown by the 116és.
drawn in the diagram on page 22. A1l of the primes greater than
3 are in the fourth co]umn or in the sixth co]umn (i.e., they
are either one more or one less than a mu]tip]e of 6)

3

six

25 ) L

Every eveh number has a factor of two, soO, every even number,
grgater‘than 2 (which is a prime) is composite The twin primes
Jess thagf 100 are 3 and 5, 5 and 7, 11 and 13, .17 and 19,.29 and

.31, 41 ang 43, 59 and 61, and 71 and 73.

Below are possib]e (but not the only) solutions. As the conjec-
ture is stated, the case of the two primes being equa] (e.g?.
34 = 17 + 17) is not excluded.

30 = 13 + 17 32 =13 + 19 34 =5+ 29 36 = 17 + 19
38 =31+ 7 40 = 17 + 23 42 = 5 +'37 44 = 7 + 37
46 = 177+ 29 48=19 + 29 50 = 19 + 31

']

a) 5+7 =12 12/12
41 + 43 = 84.  12/84. ’
(714 73 = 144 12/144 - ” N

b) In each pair of twin primes. the smaller one is one less’
- than a mu}tip]e of 6 and the larger one is one more than a
multiplé of six. So let Py =6n -1, P, = 6n + 1. Thus,

Py + Pp=6n-1+6n+1s= 6n+6n = 12n. And 12n is obvi-

ously a mu]t1p1e of 12.

Below are possible (but not the only) answers.

31 =3+ 11+ 17 43 = 7+ 17 + 19
33é3+11+19 45 = 5 + 17 + 23
35 =5+ 11 + 19 47 = 7 + 17 + 23
37 =5+ 13+ 19 149 = 7 4+.19 + 23
39 =7+ 13419 51 = 11+ 17 + 23,
41 =5+ 17 + 19 '

23
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v .. L L " . -8
A special case of this conjecture»{ is a conjecture made ‘b@the
American mathematician Levy fn 1964. Levy's conJecture is that ‘
every odd number greater b’»an 7 is.the.sum of tw1ce one prime
plus another (f.e., N =2p + q where N > 7 is odd and p and q
are distinct primes). -

10. An answer to the challenge problem s given below. k
a) g(1) = 43 g(5) = 71 |
g(2) = 47 g(6) = 83 .
g(3) =83 . g(7) £ 97 .
ng(4) = 6] - :
b)" '9(40) = (40)% + 40 + 41 | 0 ,
= 40(40 + 1) + 41 , 1 T
= 40(41) + 41 = (41)2 o - C
Part B '
1. The table should be comp]eted as fo]]ows o .
| Given Prime New Numbers Generated by Proposed Method o ‘
2 2+ 1 =3 (prime) : '
-— 3 ° (2-3) + 1 = 7 (prime)
5 (2:3-5) 4 1 = 31 (prime)
7 (2:3:5-7) +1 = 211 (prime) T
" .1l «| (2:3.5.7-11) + 1 = 2311 (prime)
13 (2-3:5-7:11-13) + 1 = 30031 = 59509
17 w | (2:35:-7-11-13-17) + 1 = 510,511 = 19-97-277

2. "Yes, in fact in any set ofﬂan even number of “"conﬂsecut'ive even’
mumbers there are as many E-peimes as there are E- -composites, .
becausa the E- ~primes are even numbers which are non-multipTes of
4 and the E-composites are the multiples of‘ 4. - -

“’3&4 Given a prime p, consider (2:3-...-p) +'1. The number one more
than the product of all the primes less than or equal to p.
" hTh’ s number has no prime factor less than or equal to p, because -
thi remainder upon division by each prime less than or equal to ‘

-

24
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B : p Mill be 1. Hence this number is either prime or has a prime -
: : , - . . - o

K4

| ‘ .. factor larger than p.

@

-Part C 1
1. ’ : - N » Lo N - ]
Number * [ 5042 ] 5043 | 5044 1| 5055 |- 5056 | 5057
Found by | 7t +2|7t+ 37+ 47t 45071 +6]|71+7
Has a. factor of 2 -3 4 5 6. 7

2. The 1000 consecutive toﬁposites cou1d be found by evaluating
[(1001) +.27, [(1001)! + 3], ..., [( (1001)! + 10007+ [(1001)!.+"
1001] , Note, however, that each 'of these numbers is on the or-

~.der of 4 x 102570 ¥i.e., has 2, 570 digits 1n its base ten nu-
meral). We do not recommend that you ask students to g1ve the1r
answeq; to 'this quest1on in expanded notat1on

A}

COACTIVITYET . e
AN APPLICATION: GCF and LCM-

" MATERIALS PREPARATION: ' o B

None

. COMMENTS AND SUGGESTED PROCEDURE- : L

Q@The content of this a\t1v1ty is separated into three parts: Part A '
LCM, Part B: GCF; and Part Ci LCM, GCF, ard Prime Factorization. Iﬁ,~ .
éthe first two parts the students work w1th the concepts and formulate
definitions; in.the third part, students exp]ore alternate methods of
finding LCM and GCF and some propert1es of the LCM-and GCF of a num=
ber. A useful organ1zat1ona] sequence for this activity wauld be 1n~
troduction, group work to formulate definitions, class d1scuss1on of . .
‘the def1n1t1ons, and eXerc1se comp]et1on as homework . '

~ ¢

.
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"ANSWERS :’ : ' o /e‘

a1,

2

a) 117 . .
"b)_ 900 . ’ .
- ¢) 120. L ’

Zerd cannot be the denominator of a fract1on, because d1v1s1on ' :
" by 0 is undefined. - . ’ ' ‘
| v et . : " a
3. Students' answers to this question should be comp]ete sentences ' ;
" containing the words "multiple(s)," "common" {or "in both sets")
and "least" (or "minimum").’, oo T ‘ . .
. Part'B. . - L b . -
1.oa) 7. . "
b) 15 \
) 1 - . oY
2. Students' answers to th1s question should be comp]ete sentences ‘ ‘ '
containing the words "factor(s)," "common" (or "belonging to .
*both sets"), and "largest" (or "greatest," etc.).
3; The example g1ven should be s1m11ar to the f0110w1ng
v Ex3- 1~6 6w GCF (6,12) = 6 s0
6_ 6:6_1 y
12. 12 + 6 2 -
“4. The product of the1r LCM and their GCF is the product of the two"“”"’—_f;'
numbers (i.e., GCF (a,b) x-LCM (a,b) = a-b). '
5. Yes, any factor of either of the two numbers will be a factor of
" every common fiultiple of them. . v . o T ’
6. The GCF of three cqwat1ng numbers 1s the larggst count1ng number

which is a factor of all three of them

a) 3 T ma - -.c) 15,

e . l .




-b) 60

e ' : - ’ .
As defined, * is a:binary<operation. Some of its properties

e

“are: . 3 . o e
(1) a*xa = a (i.e., * is idempotent) -
(2) a*l =1 ‘ ) '
(3) (axb)xc = 6*(b*¢) (i.e., * is associative) .
(4) axb = bra (i.e., * is commq}ative)
(5) axb < a axb < b hence , .
" awbrc < a axbxc < b . axbxc < C
axbxc < axb . axbxc < axcC © awbkc < bxc
(6) if p and q are.primes pxq = 1 R
(7) if m|n mxn = m B

Using the result of eXercjse (4) above, the GCF of a and b

‘must be 1. (i.e., they are relatively prime)

-

Part C

1. a) 12=.2.2-3 40 = 2.2.2.5 L
LCM (12,40) = 2:2-2-3-5 = 120 : R .
b) 54 = 2.3.3.3 72 = 2.2.2.3.3
LCM (54,72) = 2-2-2-3:3-3 = 216 :
c) 9=33 39 = 3.13

LCM (9,39) = 3-3-13 = 117

Sally's method is to write out the prime factorization of each
of the two nugpers. e LCM is the producf.of all the prime.
numbers which appear either of the two prime factorizatioﬁs,

“each prime taken as many times as the maximum number of times it
appears in either prime factorization.

1}

2-3.3 =18
5=15

it

a) 54=2-3-3.3  72=2.2.2:3-3 - GCF (54,72)
2:2-3-5 | 75 = 3-5-5 GCF_ (60,75)
c) 198 = 2-3.3-11 162 = 2.3-3:3-3 ‘

GCF (198,162) = 2.3.3-= 18 .

"
u
i

a

sally's method is to write out the prime factorization of each
of the two numbers. The GCF is the product of all the prime
numbers wnjch appear in both of the two prine factorizations,

27
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each prime taken as many times as the m1n1mum number of t1mes ]
it appears in either prime f'actorizatmn » ‘ '1

N

5. The two facts to be exp]ained are (1) that'the product of the
LCM and GCF of two numbers is equal to the product of thé two
numbers and (2) that- the GCF of a pa1r of‘numbers is always a
factor of their LCM. To see why these facts are true, we-begin
with an example. Let the two numbers be 420 and 90. We find
their LCM and GCF by using the method of writing them as the
products of primes. .

o

2

T

420 = 2
90

x3x5x7

2 x 3% 5

The LCM of 420 and 90 is the product of all the primes which
“appear in either of the two prime factorizations, each prime

taken as many times as the maximim number of times it appears - in
either factorization. The GCF of 420 and 90 is the product of

all the primes which appear in both of the two prime factoriza-
tions, each prime taken as many times as the minimum number of -
times it appears in either prime factorization. In the diégram
below we have circled the factors taken in the LCM and boxed the
'factors\taken in the GCF.

420 =-<::>-x 3 Ix| 5 x<:::) ;
90 = 2 |x <::> x<::> ' -

22.32.5.7 = 1260 ' ‘ -

.3%.5
2:3-5 =30

M (420,90)

GCF] (420,90)

Since all of the factors of 420 and 90 are either boxéd or
circled, the product of the LCM and GCF is equal to the -product
of 420 and 90. Also note that the LCM contains all the factors
which appear in the GCF (as well as others). This shows that

the GCF is a factor of the LCM. '

The steps used above are generalizable; that is, they apﬁ]y to
any .two numibers a -and b. First we write out the prime fac-

3
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’ ‘ ?
' .

R wr
’ 3 !

torization_c of a and b. If a prime p appears in the fattpr-
“jzation of Ya but not- b, then it appears in the LCM(a b) as
many times as, it appears in a. Likewise, 1f it appears in b

..but not in a, it appears in the LCM(a, b) as many times as it

MATERIALS PREPARATION:

None

appears n b. If a prime appears in both factorizat1ons, we
must note how manyeljmes it appears. 1n each. Suppose p ap-
peaqs s times in a and’ t t1me;i}h b. Then it will ;ppear
in the LCM as many times as the larger of °s and t and fn the.
GCF a5 many times as the smaller of s and .t. If it appears
in bath prime factorizations the same number of times, it ap-
pears in the LCM that number of times and in the GCF that number
of times. Each and every prime factor in the two prime factori-
zatijons will be assigned to either the LCM or GCF. Thus the

.product of the LCM(a,b). and GCF(a,bB) has exactly the same fac-

tors d( the product of a and b, so they are equal.

If youi know the pr1me factor1zat1dn of a number, all the factors
of tha number may be found by taking all poss1b1e combinations
of the prime factors (one at a time, two at.a time, ..., all of

“them at once). The number of factorg of any given counting num-

ber is the number of different subsets that can‘be formed from -

the set of its prime'factors. If a counting number a has s

different prime factors, then a ‘has 2° factors altogether. .If
2 - k, k k

a has a prime factorization of the form a = Py 1p2 ?...pn ? for

Py < Pp < - <'pn primes and each k; > 0 for i =1, ...n, then

the number of factors of a 1is (k1 + 1)(k +1).. k ¥ 1).

PROJECT 3 !
A PARLOR TRICK BASED ON NUMBER THEORY




COMMENTS AND SUGGESTED PROCEDURE :

If time allows, this trick‘should actually be performed in class in_
. order” for it to have the most impact. The solution of the téickw
could be presented by the instructor or by a class member; it ceuld
be assigned as classwork in groups; or it could be given as an op- -
tional or required homework assignment.

ANSHER:

\

ing the original digits you are in effect multiplying by 1001. The
-prime factorization of 1001 is 1001 = 7 x 11 x 13, so successive di-
visions of the six-digit number'by 7, 11, and 13 will never leave a
remainder, and the final result amounts to the original number first
multiplied by 1001 then divided by 1001, or the origina] three digit
number, * b
~ Another trick simi]af,to this one is. the following. Give a
guest a sheet ofspaper that has been divided into two columns, and in-
vite him to choose any three-digit number and write it at the top of
each of the two columns. In the example below, the guest has cHosen
237. Invite another guest to choose another three-digit number and
write it below the first number in the first column. In the example
below, the second guest has chosen 695. You now announce‘that you
- will choose a number to write below the first guest's number in the
second column. Ask another guest to multiply the two numbers in each
of the two columns, then take the sum of the producfs. You can non-
chalantly write down that his sum will be the six-digit numbef formed
by repeating the digits of the first guest's number. The trick de-
pends upon your choosing the second number in the second column so
that its sum with the second guest's number is 1001. In the example
below, the second guest chose 695, so you choose 1001 - 69S‘= 306.

When you make a Six- dig1t number from a three-digit number by repeat-




LD -
1 '
A%
237~ <
L 695 | -+  _306 ’
1185 . 1422
21330 71100
*142200 72522
164715 ~
72522 - :
. 237237
|
ACTIVITY 7
SEMINAR
MATERIALS PREPARAT ION: K

Some of‘the'following elementary_school textbooks may prove useful as -

a resource for this activity. They could be available for use in

class or suggested for use by students in preparing for the class

discussion.

Johnson, Donovan et al. Activities in Mathematics: First CouksgL
Patterns. Glenview, I114nois: Scott Foresman and Co., 1971.

LeBlanc, John F. Experiences in Discovery: Enrichment Materials for
Elementary Mathematics, Level D. Morristown, New Jersey: Silver
Burdett Co., 1967.

Manks, John L. et al. 'Ehlarging Mathematical ldeas. Teacher's ed.,
Boston: Ginn and Co., 1961.

Manks, John L. et al. Exploring Mathematical Ideas. Teacher's ed.,
Boston: Ginn and Co., 1961. :

Manks, John L. et al..  Extending Mathematical Ideas. Teacher's ed.,
Boston: Ginn and;io:. 1961.

May, Lola J. Elementary Mathematics: Enrichment, 5. Teacher's ed.,
New York: Harcourt, Brace, and World, Inc., 1966.

May, Lola J. Elementary Mathematics: Enrichment, 6. Teacher's ed.,
New York: Harcourt, Brace, and World, Inc., 1966.
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COMMENTS AND SUGGESTED PROCEDURE : S .
The essence of this activity is 1nvestigat10n of number theory work
actually being done in elementary school classes, and discussfon. of
it. Feasible organizational patterns for this actiwity include (a)
having students write brief answers to the questions outside of
class, (b) discussing the questiops in small groups: or (c) having
the instructor lead'a class discussion of the questions. No matter
how the class is handled, advance reseérch by studenEs will probably
be necessary to insure that the discussion is based on classroom re-
alities rather than on mere opinions of what ought to be.

ANSWERS : ' '

The answers given below are by no means the»only correct answers.
They are, rather, observations that might be made (by the instructor, *
if need be) in the course of the discusgion. , .

1. One reason that number theory is the basis of so -many popu]ar'

ff' puzzles and tricks is that the layman has relatively more expe-

rience with the whole numbers, their properties, and the’ opera-
tions on them than with the objects and propert1es of other-
branches of mathematics. A second reason is that number theory
is a rich branch of mathematics--rich in the sense thatrit*con-
tains a remarkable number of interesting results which ertse
from the well-known properties of the counting numbers. ;

2. There are many curious examples of numerology. in pr1m1t1ve.cu1-
tures; some of these are mentioned in the overviewbipage 5).
The fact that modern man, too, is affected by. number supersti-
tions is well illustrated by the fact that very few hotels or
apartment buildings have a thirteenthrfloon-an&,by the .fact that
air travel volume is always noticeably 1ighter on a Friday the
thirteenth than on comparable days.

3. a) Some possibilities are factors and multiples, primes and
composites, GCF's and LCM' s, odds and evens. In connection
with odds and evens, a class could discuss what happens in
each of the following cases.
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0dd x 0dd = .

0dd x Even =~ p——— — —
. ‘Even x Even =

Even x 0dd =

The class could look at a few numerical examples and then

look at rectangular arrays, etg.

Some probing questions might be:
A. Should odd x even = even x .odd?
B. If the length of one side of a rectangle is an even num-

<

ber and the length of the other side is a counting num-
ber, can you tell whether the area is odd or even?
If the 1ehgth of one side of a rectangle is an odd num-
ber and the length of the other side-is a counting num-
ber, can you tell whether the area is odd or even?

. ~What properties do 0 and 1 have with respect to multi-
plication? Do odd or even mimic 0 or .1?

One example would be to let the children complete\or
create multiplicative magic squares--square arrays of
distinct counting numbers such that the product of the
elements along each row, column, and main .diagonal is
the same. '

A partial array like the one at left

1 50 could be given for the child to com-
plete. Thé children could then try
10 ~ to construct their own squares. Once
some children have cqnstructed magic
100 squares of their own, the teacher

s

could ask whether it is possible to
construct a magic square all of whose
entries are.primes or all of whose entries are squares,
eX.
Activity 8 contains several more examples of pattern finding

in solving number theory problems.
\ ,
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c) Teacher A claims she wishes to give the children more compu-
tatfonal practice. If so,vnumber,theofy itself caﬁrlegh fq
a reasonable amount of such practice without resorting to
tiresome drills. Often a child will perform many more
arithmetic operatiogs in the process of testing a. number-
theoretic hypothesis than he .could ever ‘be expected to do in
a simple drill exercise. The substitution of intrinsic mo-
- tivations for extrinsic ones makes all-the difference.

To sammarize, there appear to be two major reasons for in-
cluding the number theory strand in elementary mathematics:

i} to extend aﬁd clarify concepts océurring in the
study of the whole numbers and the rational num-
bers, e.g., factor, multiple and Jeast common de-
nominator;

1) to prbvide problem-solving experiences, e.g., the
~ discovery 'of number patterns and generalizations.

AN




SECTION IT-
PROBLEMS AND PROBLEM SOLVING®

INTRODUCTION: \

This section is concerned with problems and prob]émfsolvjng'pro— _
cesses. Since number theory is such a fruitful source of easily

' pbsed. easily Qndefstood. yet challenging prob]ems} the opportunity
has been taken to present (in Activity 8) an organizational scheme’

_for attacking problems. Activity 9 contains‘a‘numbér of prob]ems‘of
various levels of difficulties for students to work at and solve by
the.end of the unit. The section concludes with Project 4, on

~Pascal's Triangle. _ . ‘ ;

MAJOR QUESTIONS:

1. Even in the simplest problemsy ones in which the answer 1s ap-
parent almost from the beginning, it is useful to guide one's
thinking by asking, "What am I to db?, What do I know?, What can '
I conjecture?, Is it true?, and Have I solved the problem?" In-
problems which {nvolve finding all ‘the solutions Pp a given set
‘of conditions (e.g., finding all the ‘factors of\some large num-
bers) it is necessary to have a éystematic apprzych in order to
know when all the solutions have been found. Problem solving.
always invokes reflective ;hinking. that is to say, not-only
thinkATig, about the probleg:ftse]f, but aJso thinking about the
progress that one's thinking is making toward the solution.

2. Teachers often notice that their comprehension of a topic is
enhanced in the process of preparing to teach that topic'to stu-
dents. This experience may be explained to a large extent as an
{nstance of-the organizing power of thought that is necessarily
in the reflective mode. Preéhmably. problem-soiving situations
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) 'that put the elementary school children s thinking into th1s
. mode would benefit them as.well. . v ‘

4. The teacher who gives this igrt of correction to a student prob-
ab]y assumes that the student ‘has incorrectly answered the ques-
ton, "What exactly am I to do?" No fattér how many-times a ’
student reads and rereads a problem, the teacher cannot be sure
that the student has answered this question correctly. The
teacher needs to ask questions to find out whether the student's
idea of what he is to do or to find out matches the problem ac-
tually posed. . .

=Y




' ACTIVITY 8 A
" ORGANIZING THE PROBLEM-SOLVING PROCESS

@

MATERIALS PREPARATION ) ‘ o e

“ None
-~ ) -y

f\\\;__,/)LOMMENTS AND SUGGESTED PROCEDURE: . C

This activity is clearly the longest and one of the two (along with
Activity 9) most difficilt ones of the entire unit. This activity
also contains the best exemplars of the prob]em—so1v1ng process which
the unit seeks to develop. It s suggested that the discussions apnd
- examples be dealt with thorough]y and that the students’' exercises be
. checked carefully to see whether they have understood and correctly
adopted the problem- so1v1ng techniques to which they are being ex-

-

posed. o ‘

ANSWERS ; ‘ . :
Part A, . o
1. Both questions can be antwered in the negative if one knows that
the last digit of*a perfect square can be 0, 1, 4, 5, 6, or 9
N "but never 2, 3, 7, or 8. Another proof that the sequence 2, 22,
222, ... contains no perfect squares is the following. Suppose
2 .22 ... 2, then since 22...2 {is even, n? must be even which
means n {tself {s even. So there {s some Kk such that
. n = 2k(2k)2 = 22...2. This means 4k? = 2(11...1) or that
Zk = 11...1. But this s clearly impossible because the left
side Zk2 15 even but the right side 11 .1 is odd. Another
proof that the sequence 3, 33, 333, ... contains no perfect

*-‘ squares 1s the following. Suppose n? = 33...3, then n2 a
3(11...1). This shows that n2 has a factor of 3, so n itself
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must have a factor of 3. Let n = 3k. Thgh.(Bk)z = 3(11.?]11.
or 9% = 3(11...1) or 3k% = 11...1. This shows that 11...1 has
a facton of 3; let 3a = 11...1. For this to happeﬁ the Tast
—dTGTC or a would have to be 7, but this i$ impossible because
f k% is a perfect square and there are no perfect squares that
have a ones-digit of 7. ‘

Part B I N ) v
1. First construct the table. | -
' N MNa3ger |
N - 2 . 3q r o '
o | =172 |1
i 1| 2l=2 o | 2
vz | 2%-a 1.3 1
[s] 3 . C
3 | 28 2.3 2
. S N
s ) 2%=16| 5.3 1
5 | =32 103] 2 " |
- e | 6] a3t [ -
- We hypothesize that the remainder when 2V 4s divided by 3 is 1
" 1f N 1s even and 2 1f N is odd. From this we predict that when‘
89 {s ‘dfvided-by 3 the remainder is 2. - ! *
; 2. First construct the table. ] N
- R ¥ L
R A

L4

(SEE THE FOLLOWING PAGE)

»




‘1 no E
X ‘ o N - 79 + Vo
T O 79 |.or.
o | 301 70 |1
i{3t=37 | 70 - 3 '
S 2 ' A . s
¥ 2. 3,=9 7-1 -2 -
3| B=27 } 7-3"n/”;é :
IR B LIS VR IS 26 DU B
. R R
5 | =23 |73 [ 5
S e | =9 | 110a]| 1
U I A - UR STV RN B A% Y2 A
~ 8 | B=6561 | 77937 | 2

We hypothesize that the remainder when d‘i’v'idingA3N ‘by 7 'is de-

termined by the remainder on dividing N by 6, and that if the

remainder on dividinQ'N by 6 is n then the r‘emai‘ﬁdéﬁon' di-

viding 3N by 7 will be m 'wher_; the relation between 'im; and’

n is given by the following table. ' o
. v ,‘ . . i
nlflo 1 2 3 4
- . m|1i 3 2 -6

Hence we predict that the remainder on dividing 3197

by 7 will
be 5 becalse 19_7 : ‘6 =32R5.7 - o

3. Students' answer's should-be similar.to the following:
— [ Solution to problem]| . Observat jon
- . . —| :
for small values of of Patterns '
- the variables . | - , : .
Conjectured Application of the. Hypothesis thai a8
.| (not proved) <«— | hypothesis to v'falues ’ the pattern holds
Answer | given in-the. problem | for 1arger.values
_( St " of t,hé variableg
¥ \39 , s

.
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. Part c : : B o o R
1. 1+3+5+749-= 52 = 2. RV ‘II’V'
1+3+5+7+...+19=10°=100 - - :
1+.3+5+ 7+ ... +099-= 1002 ='10000 " * . ' B
2. 2w brbr vz, L SN o
) A(1+1)q(3+1)+(5+1) ot (2t = T
o (L35 21+ 110
(111)2“+ 111 = 12321 +111 = 12432
L . '. . n A{)v ) .‘ o ’ . ) , . "]
Part D = - N S _ -
= . n, : . ’

1. 1+2+3+,..+9=%@qo=45.

1+2+3+4...+19=2L19.20 = 190

N!b—' ml.—-

1+2+3+ {.. +99=L.99.100 = 4950 .

2.‘>The retation is Son+1 = 8T, * 1.
This relation-can be proved geometr1ca11y by observing the, pat-
' tern shown below. :




The pattern for general
n 1is now clear.” ¢

3.0H =21 -1 Ho=nf+n-l=n(n+1)+1

4, Pattern.findihgvhas been an important e]ement in each and'evefy
question of this activity. Some of the “Eest1ons ask the stu-
dent specifically to findtg pattern (e.g., DZ D3).,1n others,
the finding of a pattern has been a prerequisite or perhaps sub-
conscious step in the process of finding a particular numerical

. answer. , .
‘ L 4
- ACTIVITY 9 )
PROBLEMS
MATERIALS PREPARATION: .

~None

COMMENTS AND SUGGESTED PROCEDURE

s

. Unlike the problems in Act1v1ty 8 which were so]ved by copying and .

extending certain well def1ned prob]em solving strategies presented
in the text, these prob]ems are to be’ so]ved by 1nd1v1dua1 students .

: -

a1 ?
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using théir own idioéyncratic methods. The directions in the stu-
dents' unit indicate that some or all of the problems will be as-. -
signed, that students will have a fair amount of time to work on:

them, and that the assignment is due by the end of the unit. The
cho1ce of which problems to ass1gn. and of how much time to allow

must be made on the basis of a careful analysis of students qb111-
ties and backgrounds and the difficulties inherent in the problems.
Note that the problems of Part B are considerably more d1ff1cu1t than
those of Part A

Part A

1. Yes. If n 1is even, n2 is also even.Aaﬁd n *‘nz is the sum of
two even numbers which is also even. If n s odd,.n2 is also

odd and n + n2 is the sum of two odd numbers which is even.

2. Yes, Yes, Yes. If n s even, both n and n + 2.are even so
n{n+ 1)(n + 2) is divisible (twice) by 2. If n 1is odd then
(n + 1) is even hence n(n + 1)(n + 2) is divisib]é {once) by 2.

3. Yes. If anumber n is odd it can be. written as (2k + 1) for ‘ |
some k =1, 2, ... Thus n = (2k + 1) = 4k + 4k + 1 =
4(k2 + k) + 1. Now we know that (k + k) is even (Question 1
* above) so 4(k2 + k) has a factor of 8. Hente n may be written
n=2gm+1. !

4. No, the product of two twin primes has no factors other than
one, itself, the first prime and the second prime. However, the

cause the smaller may be written 6k - 1 and the larger may be
“written 6k + 1. Their sum (6k + 1) + (6k - 1) = 12k, which is
clearly divisible by 12. ’ '

sum of two twin primes greater than 3 is divisible by 12, be - \\w

, 2 ‘ .
5. 12432+ 8%+ (on - )2 = M= D s very gifficunt
‘ to discover by méans of pattern-finding. However, one may write
&kt e im-1=4E K ad ke
k=1 ' k = ) k=1 Ko=1




to reduce the problem to one of finding a formu]a for the sum
of the squares of the counting numbers and a formula for the sum
of consecutive counting numbers. Knowing. that.

n 2 _nfn+ 1)(2n + 1) n o, _n(nt1
k 3 and that-E: k = B

k=1 | . : , k=1
and using-a little algebra yields the result above.

4

" part B

1. Closed, closed. Whether a locker is initially open or closed .
does not affect its (final) state after all boys have passed
because the first boy opens all the lockers. Thus we may sup-
pose that each locker is initially closed. This assumption al-
lows us to make the fo]]owing general statement: The state ‘of -
the k" 1ocker is changed by the n™" boy if and only if Kk is

~a multiple of nd Therefore, the kth 1oé§er changes state for

each n that is a factor of k.., If the total number of boys
is no fewer than k, then the number of state changes that the
kth'1ocker undergoes as the boys pass is just the number of fac-
tord of k. Since 1000 = 2353, 1000 has 4 x 4 or 16 factors.
Since the 1000*" Tocker was inftially closed and it underwent an
even number of state changes, it is closed after the 1000th
has passed. The 764th locker also ends up in a'closed state
because 764 equals 22 x 191 and therefore has 6 factors. As a
matter of fact, all counting numbers have an even number.of fac-
tors except those which are perfect squares. Thus all lockers
except those whose numbers are perfect sduares will be closed.
Since 1000 and 764 are not perfect squares these lockers will be
closed.

boy

2. The next five Pyrhagorean triples generated by this algorithm
are (7,24 , (9,40,41), (11,60,61), (13,84,85), and
(15,112,113). :

3. a) Suppose a g]eepkis worth 7¢ and a glop is worth 23¢. Then
- giving the clerk 10 gleeps and receiving 3 glops in change

('II' - . 43
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4.

. . - : A
- S , !»

- : a

s equ1va1ent to giving the clerk %¢ Hence, the students .

can buy all items.

b) Suppose a gleep is worth 6£’and a‘*glop is worth 21¢} Then
giving the clerk 1 g]ob and receiving 3 glops in change is
equivaﬁent to giVing the clerk 3¢. Hence the students can
buy any item (and only those items) whose cost is a multiple
of 3¢.

(If s and t are the integral values in cents of two
coins, then any item {and only those. items) whose cost is a
multiple of GCF(s,t) can be bought because

{ms + nt > 0:m, n are integers}
is just the set of counting number multiples of GCF(s,t).)

92836 29786 + 850 + 850 = 31486
+ 12836
105672 R
The smallest solution to this problem is 25 coins, but 8ln + 25,
where n =0, 1, 2, ..., is an expression which gives all possi-

ble values for the number of coins 'originally in the ehest.\ Oqe'

method of solving the problem is to let n be the number of
coins each pirate got in the final sharing and to generate ex-
pressions for the number of coins at each of the stage of the

story. ‘ ,
3n coins just before final sharing .
%(Bn) +1 . coins before 3rd pifate raids the chest

%(%n‘+ 1) +1 coins before.2nd. pirate raids the chest

%(Z%n + %0 + 1 | coins before 1st pirate raids the chest '

Thus, the original number of coins in the chest was §%ﬂ + l%',

and we seek a value for n which makes this a counting number.




PROJECT 4
( PASCAL'S TRIANGLE

[

MATEQIALS PREPARAT ION:

None

COMMENTS AND SUGGESTED PROCEDURE:’

- ) .
This project, like the other three which have preceded it can be pre-
sented in a variety of ways.- See the notes to the other Projects for
ideas. ' )

ANSWER: .. v a ) <i
1. The set {A,B,C,DJ contains 4 different subsets of one element,
6 different subsets of two elements, 4 different subsets of
three elements, and.1 subset of four elements. If one notes
that there is 1 subset containing no elements (the empty set).
then one has a one-to-one correspondence between the number of

subsets of different sizes and the numbers in the 4th row of _
. th th
k

Pascal's triangle. In general, the entry of the n= row of

_Pascal's triangle (counting the single 1 at fhE’gip as the 0N
row) gives the number of k - 1 element sypsets of an n ele-
ment set.




. SECTION 111 .
APPLICATIONS, CONNECTIONS, AND GENERALIZATIONS

-

INTRODUCTION:

This section contains activities which use the number theory ideas
developed in Section I. As the title indicates, the section gives
not only uses (applicat{ons) but also connections between ideas and
some mathematical generalizations. For the most part, the ideas of
this sect1on do not have direct implications for the elementary
school. 4 Instead, the content is placed in a Mmathematical setting

and pursued in spch a way as to whet the student's appetite. For
students who do wish to study more number theory, aniextens1ve bibli-
ography {s included at the end of the unit.

MAJOR QUESTIONS: ; ,

_ 1. The days of the week aéd months of the year maybbe thoughf of as
remainder classes just as the 12-hour clock was in Activity 10,
question-4. Activity 12, Part C contains other rea] -world in-
stances of the concept of remainder classes.

2. The process of 1dent1fy1ng a~symb01 wjxh an equivalence class is

essentially the same in both cases. In the association of num- )

Bers .with numerals all sets of,; say, 3 objects are gquiva]ent‘in

' }he1r threeness. - In the association of-symbols w1th remainder

classes, 1t is numbers (themselves abstractions) which are ab-
stractly related by the equivalence.

3. Yes. Equality in the ordinary sense has all the properties of
congruence but not vice versa. Equality, then, {s a stronger
relation, but both congruence and equality are instances of the
general concept of an equivalence relation.




In géometry there are many examples of pértitioning a set by an
equivalence relation. Both “Ys similar to" and "1is congruent '
to" are equivalernte relatipas defined on the set of geometric
figures. The relation "has the same number of sides as" is a -
useful equivalence relation defined on the set of po]ygons; In
algebra one can partition the set of linear equations in one
variable into equivélencé classes on the'basfs of slope (i.e.,

y = myx + b is equivalent toy = moX + b when m = mz). One o
notes, for example that the sum and difference of two equations

~in the same equivalence class are also in the same class.




. ACTIVITY 10
# REMAINDER CLASSES

LY

MATERIALS PREPARATION:
(Optional) sets of E;les.

COMMENTS AND SUGGE??{D PROCEDURE :

This activity 1nt¢oduces the concept of remainder classes through

% concrete {or semi- concrete) embodiments. The activity should not -
take long, nor is it difficu]t but it Qh9uld not be overlooked,
because it provides the real-world room&yto the concepts exp]ored in
Activities 11 and 12 (on modular arithmetic).

ANSWERS : 2 : ) .
1. Rows of 3: .
Rows of 4: S o ) | .

L




a)

d)

Rows of 5:

The: different arrays show a number being part1t1oned into a
rectangle of q rows each of 1ength b - ( q) and a part row

{r) where the number in the part row r 1s less than the‘

row length b.

0,1; 0.1,2,- 0,1,2,3; 0,1,2,3,4

0,1.2,...on -1 . g

Three: numbers with r = 0, with r = 1, and with r =

Two: numbers with r = 0 (ihe‘eVen numbers) and those with
r =1 (the odd numbers) '

Five: those with r = 0, with r = 1, with r = 2, with r = 3,

(with r=4, R

This is guaranteed by the division algorithm which asserts
that given a and b there exist unique values for 'q and
r such that a=bg+r O<r <b.

The times on the 24<hour clock range from 0000 hours {0 hours 0

minutes after midnight) to 2359 hours (23 hours 59 minutes after




midnight). To convert from 24-hour clock to 12-hour clock we
divide by 1200 and consider the guot.ien’t a“%dv the remainder. The ‘
~ quotient tells you whether the time is before or after-noon, the
. - remainder gives' you the time in 12-hour clock. For example: o
1415 hours = 1200 (1) ¥ 215 so 1415 hours is 2:15 p.m.; 0720 = |

1200 (0) + 720 so 0720 hours 15]:20 a.f. =
. . . R ‘ ]
o - PROVECT S :
ﬁ THE SUM OF THE FIRST N COUNTING NUMBERS
MATERIALS PREPARATION:  ° . 3

None

COMMENTS AND SUGGESTED PROCEDURE: e

Th1$ Project takes another look (from a different perspective) at a
fact discovered in Activity 8. It may be dealt with in _any of the. .
several ways suggested ‘in the instructor's notes to the other Pro- ‘
jects. : ’ o

ANSWERS :

1424 ... +418=142+...+13+14°

. sum 15.
There are l-g— such sums, so 1+ 2+ ... + 14 = 7-15,

142+ ... 420 1+2+ ... 419+ 20
. | — |

"

. - ~sum 21 ‘

There are —2% such sums, so 1.+ 2 + ... + 20 = 10-

el L
The use of Pascal's trtangle to verify that‘Sn = %n(n + 1) in the

case of n = 6 {s shown in the following diagram.

50 .
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(n +’)) for n = 6 is

+6-7 = 21

15 20 15 6 1 . ¢

1 7 21 3 3 21 7 1

The use of Pascal's triangle to show that the formula is true for n

odd is straightforward. The grouping idea is more difficult, but can

be carried out with ah argument such as the following: In I'+ 2 + 1
. 4+ n there are an odd number of terms when n {s odd, but Lﬂ—%—ll

pairs of them have the sum n + 1. t

e

1+2+ ...t (n -ﬂl%ﬁé n
I sum n + 1I ' I

‘II’ ’ _ sum n + 1
The middle term will be ﬂ—%—l so the whole sum will be
n-1 n+1_(n-N(m+1) n+t1l, .
7t )+ T s T Ty .
. n+1 nt+1

EEY (- 1) +1) = Cgbn = Jatn + 1),

| ACTIVITY 11
’ - MODULAR ARITHMETIC I .

MATERIALS PREPARATION:

None

COMMENTS AND SUGGESTED PROCEDURE:

- This act1v1ty.1s cpncérneﬂ with supplying the notation to eipress
. formally the ideas developed in Activity 10. The presentation of the

Ve
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notation 4s followed by exercises in app]}ingthe symbols. -Anfitem
that deserves special attention is the notion of "wgll-def’innd” ness" ‘
which appears in question 3. To a mathematician this is.a nafral
concern; to the mathematically unsophisticated this notion Mmay seem
less natural and require some careful development. 1t might be-use-
. ful to relate it to "vagueness" and to comment on the diffiicultﬁes
children have with awvague concept.
ANSWERS: _ .
Lo+ flo), 0y 23, 03, o+ |0l [ (2 [a)g D)

(o, (o) [0 (2 (33 [oJg|[o] () e (a0 el

[11, |11 [2] (3] [0  [1)g{01] [2)- (3] (4] [0]

(2], |(2) (3] [0 011 (2] (2] (3] (4] [o] [1)

[3], |81 (0] (1) (eI ——fsl|(3) [4] [o] D] [2]

BT 5 P % €03 O 3 I )

x |lo)g Dndg [2dg D) Ladg IsTg - o .
10 [C03. Co1 (0] [0] [0] [0] | ;
A g (0] [1] [2] (3] (4] [s]
T2l |[0] [2] [4] (0] [2] (4]
(3] | (0] (3] [0] (37 [0l [3]
. [l |[0) 4 2] o) 4] (2]
s (81 |[0) [s] [4) (3] [2] (1]

ez
2. a) yes, [0]4 * ‘ ,1
b) yesr [1]4 Y
c) nl, EZ].“ X [2]4 = [0]4 'betﬁe’ither factor (2‘]4‘15 [0]4.- %
d) yes, [O]S; yes [1]’5; yes l_a]5 + [‘b]'S = [Uis requires either

| 4 ‘ ‘
4 [
’ A N
X -

- o . N 52

[a]5 &= [0]5 or [:b]5 = [0]5, or both. This can be verif.ied

19> .




\by examining a table constructed for- x on this system as

4 . ,
' in exercise 1.
‘ 3. i

a) Possible answers are

= . = D = >
p (01 + (203 = [21y (1 + (3] = (0], [2]g + [#%5 11
: ,.P 6 +'14 = 20 5+ 7 = 12 2+ 14 =16
18 + 8 = 26 _ Q13 + 15 = 28 S 7+19=26
G) Poss1b1e answers are , .
. [, x (2], = [2], (2], x [0], = [o], [1] x [4] = (4],
- 4 x 8 =32 - 6 x4=28 "7 6 x 4 =24
. 10 x 11 = 110 10 x 8 = 80 11 x9 =99
' A
PROJECT 6
CASTING OUT NINES N
MATERIALS PREPARATION:
' None -
COMMENTS_AND SUGGESTED PROCEDURE: o B .
Th1s PrOJect deals with an 1nterest1ng app11cat1on of modular arith-
metic which has been in use for several centuries. It i$ likely that

in the past few peop]e using this technique tould ggp]ain its mathe-
matical basis, and that their inability to do so wa$ the result’of
never having investigated remainder classes and never having devel -

+ oped notation to describe them. Casting out nines 1s a good example
of an interesting and usefq] result in number_Eheory“which is acce§-

@

sible to the layman. o : .

ANSWERS:

1. 481 + 653 + 98 + 124 = 1356 The sum is correct and casting out
/ [4] + [5] + [8] + [7] = [6] nines does not show it incorrect.

7




- ) -

25 + 36 + 86 #.157 The sum is incorrect and casting out

- '[7] + [0].+ [5] # [41 7 nines shows. that it-is incorrect. = ,
. N
',37 x 255 # 9535 " The product is jncorrect and casting
N (1] x [3] # [4] ' out nines shows that it is 1ncorrect

17 x 41 =697 . _ . The product .is correct and easting
[8] x [5] = [4] ' out nines does'not show that it is
‘ ‘ incorrect. . . &

*

>

58 x 74 # 4382 .* The product is ingorrect, but Casting
_[43 x [2] = [8] out nines does not show that it is’
o " incorrect (i.e., casting out nines
“does not detect the error). ' = ™

2. 73+ 42 # 124 Any sum in which one digit is one too
=[1] + [6] = [7]- - large and another d1g1t is one too
e - small will do,

Cha]]enge¥PgoBiem

Casting out;nines depends Upoh two, pr{ngipies: (1) that if n is a
counting number and s(n) is the sum of its digits then.s{n) = n{mod - - 3
9) and (f) if a+b=candaxb= d, then. in any modulus (and in
particular in mod 9) a(mod 9) + b(mod 9) = c(mod 9) and a(mod 9) x
b(mod 9) = d(mod 9). S '

Principle (2) has been deve10ped in question 3 above and prin-
ciple (1) can be.justified as fo]]ows In a has k digits and

A k -1

a=aj*ta 10+a, 100+ ... +a 10" where @ <a <9 for,

k -1

1-0 1,... .k - 1, then n = a0+a1(’9+ 1) +‘a’2(9+ 1)2+ el F

1(9 + 1) ~(a0 ta g ta, t.. 4 an) +<N where N is some

number divisible‘by 9. Thus, n'= (ao tag ...t ‘:1)(mod 9). °




ACTIVITY 12

_ . MODULAR ARITHMETIC I1: :
‘ * CONGRUENCES, EQUIVALENCE RELATIONS, AND APPLICATIONS

MATERIALS PREPARATION:

None

'

_ COMMENTS AND SUGGESTED PROCEDURE:

w

This activity conta1ns the most sophisticated-mathematics of the

entire unit. Part A deals with the notion and notation of an equi-
~valence class. Part B deals with properties of equ1va1ence classes .

in some generality. Part C contains problems which can be solved .
~using modular arithmetic Problems 1 and 4 in Part C are fairly dif-

.

"ficult and may be used as challenge problems.

{

*  ANSKERS:

1. (x: S, x = 0 (mod 2)} = (4, 6, 8, 10, 12, 14}
(x: xe Sy x =1 (mod 3)) = iey?, 10, 13)

{x: xeS, x=0 (mod 5)} = {5, 10}

(x: xe S, x=1(mod 4)} = {5, 9, 13}

{x: xe S, x=2 (mod 6)} = (8, 14} '

w

Suitable.examples are

= 3 (mod 6) = .9 = 3 (mod 3)
= 4 (mod 8) => 12.= 4 (mod 2) -

3., If p|q there is an integer ~x such that px = q. If a = b(mod
q) then g|(a - b), and therefore px|(a - b). It follows that
p|(a - b) and therefore a = b (mod p). ‘

The reason this "ought to be true" is that congruence mod p
is an equivalence relation and equivalence relations are transi-
tive. .A proof of the assertion follows. * .

If a = b(mod p) and b = c(mod p), then p|(a - b) and p|(b - c}.
If a number divides both of two numbers it divides their sum, so
p|{(a #b) + (b -c)]orp|(a -c). Hence a = c(mod p).

v
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Consider a number n such that n E\3(mod 65. Such a number

must satisfy'6|(n - 3), so there is an integer b such that
n-3=6kor equiva]ently‘n = 6k - 3. This shows that n
must‘be odd. Thus any numbér congruent to 3 mod 6 is odd, and
consequently 2x = 3(mod ‘6) is 1mpossib1e

The key to this problem is to work in mod 3 In- mbd 3 apy
counting number m must be congruent to 0 or lor2. ,I1f ms=
mod 3 then m’ = 0 mod 3> If m= 1(mod 3) then n’ = 1(pod 3).

If m = 2(mod 3) then me l(mod 3). In no case is m2 2(mod
3). But'(3n - 1) = 2(mod 3), hence (3n - 1) Cannox be a perfect
square.

No. If 4(n% + 1) is divisible by 11, then n? + 1 must be divis-

ible by 11. Another way of saying this is that n2 + 1 = '0(mod
11), or n2 5-10(mod 11). We may check whether this is possible

by constructing the following table. A

n(mod 11){0 1 2 3 4 5 6 7 8 9 10

n(mod 1) 0“1 4 9 5 3 3 59 44 1
The table shows that there is no n such that n’z 10(mod ).

See the answer g%ven in Activii? 10, question 4.

Part B

." An equivalence

Not an equivalence; not reflexive; not symmetric

‘Not an equivalence; not symmetric

; { .
Not an equivalence; not reflexive; not symmetric

Not an equ1va1ence, not reflexive; not symmetfic; not transitive

An equivalence; if one associates (a,b) wfth the fraction —-then
the equivalence ~~ is the ordinary equivalence of two frac-
tions. ‘

An equivalence ~
‘ -0
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1.

2.

. 3.

4.

Part C

.
¥

51'eggs. If n is the number of cartons of eggs originally and -
x 1is the number of batches .of cookies, then 12n+ 3 - 5x = 1.
Stnce 12n = 0(mod 12) we have 3 - 5x = 1(mod 12). Then

3.3 5x + 1(mod 12) and consequently 5x = 2(mod>12). Thus 5x

-

_ belongs to (14, 26,-38, 50, ...}. The smallest possible valye

of 5x 15 50 so x = 10. Substityting this in the original equa-
tion we get 12n + 3 - 50 =1 or 12n + 3 = 51. Thus there were
originally 51 eggs.’ . . St

In mod 5 'arithmetic 3-2 = 1(mod 5), 4-4 = 1(mod 5).
a)

.

is 1 in mod 5 arithmetic

15'% in mod- 5 arithimetic

- 314s 4 in tod 5 arithmetic

Nj— W= N|—

Yes. He meant that the inverse of 2 in mod 5 arithmetic

] . .
times the inverse of 2 is the inverse of 4 in mod 5 arith-
metie.- Since 3 is the ifverse of 2 and 4 is its own inverse

he claims that 3-3 = 4 in mod 5 arithmetic; apd he is right o

x %> 2(mod 5) 1mp11es that x ¢ (2, 7. 12, 17, 22, 27 32, 37,
b 3xoa l(mod 8) implies.that x must be 0dd”" and conse-

" quently we need to consider only’ the odd numbers in the above

set, {.e., (7, 17, 27, ...). _§1nce 3-7 =21 = 5(mod 8),
3-17 = 51 .: 3(mod 8), and 3-27 = % 1(mod 8), 27 is the small-
est whole humber solution to the pair of congruences

The check could have been for $10.21. To solve the problem, let
A be the number of cents in the check and B be the number of
dollars. The story tells us that 100A + B - 68 = 2008 + 2A,

from which we may deduce that B - 68 = 2A(mod 100).- Now since
there was only one purchase and only one possible regrouping of
dollars to cents, one of the following must hold: either

2A = B - 68 (Since A > 0, we conclude B > 68 and since B is two
digits, A?i~16. With such A and B, 100A + B - 68 = 200B + 2A {s

¥
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impossible.); or 102A = B - 68 (Since B is a two-digit number,

this is 1mpossib]e.); or 2A = B + 32. By trial and error one

has detem;hed that it is the 1ast of these which yields a whole .
* number’ solutton by substituting A = ?—%—32- into.the original -

equation 100A + B - 68 = 2008 + 2A. "The details follow.

B + 32

100(25-32) + 8 - 68 - 2008 4+ 2(B ; 32
50B + 1600 + B - 68 = 2008 + B + 32
1600 - 68 - 32 = 1568
1500 = 1508, B = 10 .
B+ 32 10432
) p-B2 3. 10532, 5

ACTIVITY 13
THE EUCLIDEAN ‘ALGORITHM AND OTHER SELECTED TOPICS -

¢

MATERIALS PREPARATION: * .
" None 4 ‘ ‘ .

"COMMENTS AND SUGGESTED PROCEDURE: s

B

This final activity in the unit concerns the Euclidean Algorithm (for
fihding the GCF of two numbers) and the fact that given integers a

and b there exist integers m and p. such that am + bn = GCF(a,b).

The verbal argument on pages -105-106 justifying the algorithm should

be presented with d1scu§s1on in class. Many students may lack the '
mathematical experience and maturity to follow such an argument pre- —~— = "~
sented only in print.

ANSHERS :
1. a) 2
b) 44

\

v a [

-1
P
e
Qo
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. L - | ‘ ) - .
"2, The hint is a reminder that for any counting numbers a and b
LCM(a,b) x 6CF(a,b) = ab. Thus LCM(a,b) = EE?%%TBT . The GCF
may be found by the following ‘steps.

2 r 200 13r18  11r2 9r0 . “

2618)5436 _ 200J2618 187200 2]18
5236 2600 198 * ,
200 , 18 2

Therefore, LeM = 24361 2618 - 7115709,

3. a) This is just exactﬁy the Euclidean algorithm in a format’
which does not require rewriting the remainder as the next
divisor. ‘

b) 303 1 3 2
2 Je6T 201 26) 98) 222

002 "6 20 26 R

3 1 1 2 3 6

a4 T121 16] 28] 72) 244) 1536 - )
12 12 16 56 216 1464 :

0 4 12 16 28 72 ‘
Part B -
1. a) GCF =3 = (-3)-9+ 1-30
b) GCF = 4 = (-3):8 +1-28
¢) GCF =1 = (-11)-9 + 425 i ]
d) GCF = 6 = (-2)-18 + 1.42

2. The GCF of two relatively prime numbers is 1.

3. a) Relatively prime 1 = (-9)-9+ 4:20
b) GCF =3 # 1 .
. c) GCF=2¢#1
d) Relatively prime 1 = 6-6 + (-1)(35) .
59




< 4. No, the relation is neither transitive nor reflexive. For exam-

ple, 4 and 9 are relatively prime, and 9 and 8 are relativé]y

prime’, but 4 and 8 are not relatively prime. Also the GCF of a ‘ |
number -and itself is itself, so a‘nymber cannot be relatively }

prime to itself. . "

TEACHER TEASER, page 36

)
= |
i

nl -n=0 s always divisible by 1
n2 -n=nn-1) is always divisible by 2 (one of two consecu-
‘ tive counting numbers is even)
n3 -n={(n-1)(n)(n+ 1) is always diVisib]e by 3 (one of three g~
i consecutive numbers is a multiple of
0 . ' ) 3) - - .
X n4 ~n=(n- 1)(n)(n2 +n+ 1) is gg&_é]ﬁays divisible by 4 (if
o , n =2, 2% - 2= 14 which is not
) | ~ divisible by 4) .
5 (n - 1)n)(n + })(n2-+ 1) s always divisible by 5 (one ‘

of the factors is always a
L S multiple of 5)
In gene}a1, if k 1s prime then'nk‘- n is always divisible by k, no = '
matter what whole numbers n is. If the student tests the case - -
. n6 - n or especially if he uses a computer to test several more
lcases. he will probably fiad this ‘pattern -

TEACHER TEASER, page 51

The only prime triple is 3, 5, 7. To prove this suppose p - 2, p,

p+2are primes and p> 5. If p> 5 thenp -2 and -p are a pair

of twin primes, which are one Jess and one more respectively than

some multiple of 6. Letp - 2 = 6n - 1'and 6v= 6n + 1. Thenp + 2 =~

6n + 1 +2 = 6n + 3 = 3(2n + 1), which shows that p + 2 is not prime .
because it has a factor of 3. So it is impossible to have prime tri-

ple p - 2, p.rp + 2 with p > 5. . ’ :

By

B R » . 4
- - . -
'
. .
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TEACHER TEASER, page 86

Let n be the number of the first day of some week. Then the seven
days are numbered n,n+ 1, n+2, n+3, n+4,n+5,n+6.

- Their sum s 7n + 21 = 7(n + 3). Another way of looking at this is

to number the days [(n + 3) - 31, [(n + 3) - 2], [(n+ 3) - 1],

[n+ 3], [(n+3)+1], [(n+3)+2], [(n+3)+ 3] and to notice
that. there are seven days each of whfcb“has an (n + 3) term and an-
other term which is the additive inverse of that term for some other

. day. The total is 7(n + 3).

TEACHER TEASER, page 96

Sally 1s correct; the ones digit of a square can never be an 8. The
ones digit of a square can be 0, 1, 4, 5, 6, or 9, but never 2, 3, 7,
or 8. ‘ ’ ' '

~,




